run_tracers_restored_zarr
MITgcm output from a wind and thermally driven channel with a ridge at 5km resolution and interior restored tracers
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/channel.yaml")
ds = cat["run_tracers_restored_zarr"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
time_resolution | 3 day snapshots |
duration | 16.5 years |
uploader_github | charlesbluca |
uploader_email | charles@ldeo.columbia.edu |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- XC: 400
- XG: 400
- YC: 400
- YG: 400
- Z: 40
- Zl: 40
- Zp1: 41
- Zu: 40
- layer_1TH_bounds: 43
- layer_1TH_center: 42
- layer_1TH_interface: 41
- time: 1980
- Depth(YC, XC)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- XC YC
- long_name :
- ocean depth
- standard_name :
- ocean_depth
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - PHrefC(Z)float32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 160 B 4 B Shape (40,) (1,) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - PHrefF(Zp1)float32dask.array<chunksize=(41,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 164 B 164 B Shape (41,) (41,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - XC(XC)float322500.0 7500.0 ... 1997500.0
- axis :
- X
- coordinate :
- YC XC
- long_name :
- x coordinate
- standard_name :
- plane_x_coordinate
- units :
- m
array([ 2500., 7500., 12500., ..., 1987500., 1992500., 1997500.], dtype=float32)
- XG(XG)float320.0 5000.0 ... 1990000.0 1995000.0
- axis :
- X
- c_grid_axis_shift :
- -0.5
- coordinate :
- YG XG
- long_name :
- x coordinate
- standard_name :
- plane_x_coordinate_at_f_location
- units :
- m
array([ 0., 5000., 10000., ..., 1985000., 1990000., 1995000.], dtype=float32)
- YC(YC)float322500.0 7500.0 ... 1997500.0
- axis :
- Y
- coordinate :
- YC XC
- long_name :
- y coordinate
- standard_name :
- plane_y_coordinate
- units :
- m
array([ 2500., 7500., 12500., ..., 1987500., 1992500., 1997500.], dtype=float32)
- YG(YG)float320.0 5000.0 ... 1990000.0 1995000.0
- axis :
- Y
- c_grid_axis_shift :
- -0.5
- long_name :
- y coordinate
- standard_name :
- plane_y_coordinate_at_f_location
- units :
- m
array([ 0., 5000., 10000., ..., 1985000., 1990000., 1995000.], dtype=float32)
- Z(Z)float32-5.0 -15.0 ... -2830.5 -2933.5
- axis :
- Z
- long_name :
- vertical coordinate of cell center
- positive :
- down
- standard_name :
- depth
- units :
- m
array([ -5. , -15. , -25. , -36. , -49. , -64. , -81.5, -102. , -126. , -154. , -187. , -226. , -272. , -327. , -393. , -471.5, -565. , -667.5, -770.5, -873.5, -976.5, -1079.5, -1182.5, -1285.5, -1388.5, -1491.5, -1594.5, -1697.5, -1800.5, -1903.5, -2006.5, -2109.5, -2212.5, -2315.5, -2418.5, -2521.5, -2624.5, -2727.5, -2830.5, -2933.5], dtype=float32)
- Zl(Zl)float320.0 -10.0 -20.0 ... -2779.0 -2882.0
- axis :
- Z
- c_grid_axis_shift :
- -0.5
- long_name :
- vertical coordinate of upper cell interface
- positive :
- down
- standard_name :
- depth_at_upper_w_location
- units :
- m
array([ 0., -10., -20., -30., -42., -56., -72., -91., -113., -139., -169., -205., -247., -297., -357., -429., -514., -616., -719., -822., -925., -1028., -1131., -1234., -1337., -1440., -1543., -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470., -2573., -2676., -2779., -2882.], dtype=float32)
- Zp1(Zp1)float320.0 -10.0 -20.0 ... -2882.0 -2985.0
- axis :
- Z
- c_grid_axis_shift :
- [-0.5, 0.5]
- long_name :
- vertical coordinate of cell interface
- positive :
- down
- standard_name :
- depth_at_w_location
- units :
- m
array([ 0., -10., -20., -30., -42., -56., -72., -91., -113., -139., -169., -205., -247., -297., -357., -429., -514., -616., -719., -822., -925., -1028., -1131., -1234., -1337., -1440., -1543., -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470., -2573., -2676., -2779., -2882., -2985.], dtype=float32)
- Zu(Zu)float32-10.0 -20.0 ... -2882.0 -2985.0
- axis :
- Z
- c_grid_axis_shift :
- 0.5
- long_name :
- vertical coordinate of lower cell interface
- positive :
- down
- standard_name :
- depth_at_lower_w_location
- units :
- m
array([ -10., -20., -30., -42., -56., -72., -91., -113., -139., -169., -205., -247., -297., -357., -429., -514., -616., -719., -822., -925., -1028., -1131., -1234., -1337., -1440., -1543., -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470., -2573., -2676., -2779., -2882., -2985.], dtype=float32)
- drC(Zp1)float32dask.array<chunksize=(41,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size_at_w_location
- units :
- m
Array Chunk Bytes 164 B 164 B Shape (41,) (41,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - drF(Z)float32dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size
- units :
- m
Array Chunk Bytes 160 B 4 B Shape (40,) (1,) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - dxC(YC, XG)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_u_location
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dxG(YG, XC)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_v_location
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyC(YG, XC)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_v_location
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyG(YC, XG)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_u_location
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacC(Z, YC, XC)float32dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction
Array Chunk Bytes 25.60 MB 640.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - hFacS(Z, YG, XC)float32dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_v_location
Array Chunk Bytes 25.60 MB 640.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - hFacW(Z, YC, XG)float32dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_u_location
Array Chunk Bytes 25.60 MB 640.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - iter(time)int64dask.array<chunksize=(35,), meta=np.ndarray>
- long_name :
- model timestep number
- standard_name :
- timestep
Array Chunk Bytes 15.84 kB 280 B Shape (1980,) (35,) Count 58 Tasks 57 Chunks Type int64 numpy.ndarray - layer_1TH_bounds(layer_1TH_bounds)float32-0.2 0.0 0.2 0.4 ... 7.8 8.0 8.2
- axis :
- 1TH
- c_grid_axis_shift :
- -0.5
- long_name :
- boundaries points of layer 1TH
- standard_name :
- ocean_layer_coordinate_1TH_bounds
array([-0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. , 2.2, 2.4, 2.6, 2.8, 3. , 3.2, 3.4, 3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. , 5.2, 5.4, 5.6, 5.8, 6. , 6.2, 6.4, 6.6, 6.8, 7. , 7.2, 7.4, 7.6, 7.8, 8. , 8.2], dtype=float32)
- layer_1TH_center(layer_1TH_center)float32-0.1 0.1 0.3 0.5 ... 7.7 7.9 8.1
- axis :
- 1TH
- long_name :
- center points of layer 1TH
- standard_name :
- ocean_layer_coordinate_1TH_center
array([-0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1], dtype=float32)
- layer_1TH_interface(layer_1TH_interface)float320.0 0.2 0.4 0.6 ... 7.4 7.6 7.8 8.0
- axis :
- 1TH
- c_grid_axis_shift :
- -0.5
- long_name :
- interface points of layer 1TH
- standard_name :
- ocean_layer_coordinate_1TH_interface
array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. , 2.2, 2.4, 2.6, 2.8, 3. , 3.2, 3.4, 3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. , 5.2, 5.4, 5.6, 5.8, 6. , 6.2, 6.4, 6.6, 6.8, 7. , 7.2, 7.4, 7.6, 7.8, 8. ], dtype=float32)
- maskC(Z, YC, XC)booldask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- mask denoting wet point at center
- standard_name :
- sea_binary_mask_at_t_location
Array Chunk Bytes 6.40 MB 160.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type bool numpy.ndarray - maskS(Z, YG, XC)booldask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- mask denoting wet point at interface
- standard_name :
- cell_vertical_fraction_at_v_location
Array Chunk Bytes 6.40 MB 160.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type bool numpy.ndarray - maskW(Z, YC, XG)booldask.array<chunksize=(1, 400, 400), meta=np.ndarray>
- long_name :
- mask denoting wet point at interface
- standard_name :
- cell_vertical_fraction_at_u_location
Array Chunk Bytes 6.40 MB 160.00 kB Shape (40, 400, 400) (1, 400, 400) Count 41 Tasks 40 Chunks Type bool numpy.ndarray - rA(YC, XC)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- cell area
- standard_name :
- cell_area
- units :
- m2
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAs(YG, XC)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- long_name :
- cell area
- standard_name :
- cell_area_at_v_location
- units :
- m2
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAw(YC, XG)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell area
- standard_name :
- cell_area_at_u_location
- units :
- m2
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAz(YG, XG)float32dask.array<chunksize=(400, 400), meta=np.ndarray>
- coordinate :
- YG XG
- long_name :
- cell area
- standard_name :
- cell_area_at_f_location
- units :
- m
Array Chunk Bytes 640.00 kB 640.00 kB Shape (400, 400) (400, 400) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - time(time)timedelta64[ns]61023 days ... 66960 days
- axis :
- T
- calendar :
- gregorian
- long_name :
- Time
- standard_name :
- time
array([5272387200000000000, 5272646400000000000, 5272905600000000000, ..., 5784825600000000000, 5785084800000000000, 5785344000000000000], dtype='timedelta64[ns]')
- Eta(time, YC, XC)float32dask.array<chunksize=(35, 400, 400), meta=np.ndarray>
- long_name :
- Surface Height Anomaly
- standard_name :
- ETAN
- units :
- m
Array Chunk Bytes 1.27 GB 22.40 MB Shape (1980, 400, 400) (35, 400, 400) Count 58 Tasks 57 Chunks Type float32 numpy.ndarray - PH(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Hydrostatic Pressure Pot.(p/rho) Anomaly
- standard_name :
- sea_water_dynamic_pressue
- units :
- m2 s-2
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PHL(time, YC, XC)float32dask.array<chunksize=(35, 400, 400), meta=np.ndarray>
- long_name :
- Bottom Pressure Pot.(p/rho) Anomaly
- standard_name :
- sea_water_dynamic_pressure_at_sea_floor
- units :
- m2 s-2
Array Chunk Bytes 1.27 GB 22.40 MB Shape (1980, 400, 400) (35, 400, 400) Count 58 Tasks 57 Chunks Type float32 numpy.ndarray - PTRACER01(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER01
- standard_name :
- PTRACER01_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER02(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER02
- standard_name :
- PTRACER02_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER03(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER03
- standard_name :
- PTRACER03_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER04(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER04
- standard_name :
- PTRACER04_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER05(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER05
- standard_name :
- PTRACER05_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER06(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER06
- standard_name :
- PTRACER06_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER07(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER07
- standard_name :
- PTRACER07_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER08(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER08
- standard_name :
- PTRACER08_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER09(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER09
- standard_name :
- PTRACER09_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER10(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER10
- standard_name :
- PTRACER10_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER11(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER11
- standard_name :
- PTRACER11_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER12(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER12
- standard_name :
- PTRACER12_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER13(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER13
- standard_name :
- PTRACER13_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER14(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER14
- standard_name :
- PTRACER14_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER15(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER15
- standard_name :
- PTRACER15_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER16(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER16
- standard_name :
- PTRACER16_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER17(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER17
- standard_name :
- PTRACER17_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER18(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER18
- standard_name :
- PTRACER18_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER19(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER19
- standard_name :
- PTRACER19_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - PTRACER20(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Concentration of PTRACER20
- standard_name :
- PTRACER20_concentration
- units :
- kg m-3
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - T(time, Z, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Potential Temperature
- standard_name :
- sea_water_potential_temperature
- units :
- degree_Celcius
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - U(time, Z, YC, XG)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Zonal Component of Velocity
- mate :
- V
- standard_name :
- sea_water_x_velocity
- units :
- m s-1
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - V(time, Z, YG, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Meridional Component of Velocity
- mate :
- U
- standard_name :
- sea_water_y_velocity
- units :
- m s-1
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray - W(time, Zl, YC, XC)float32dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
- long_name :
- Vertical Component of Velocity
- standard_name :
- sea_water_z_velocity
- units :
- m s-1
Array Chunk Bytes 50.69 GB 22.40 MB Shape (1980, 40, 400, 400) (35, 1, 400, 400) Count 2281 Tasks 2280 Chunks Type float32 numpy.ndarray