run_tracers_restored_zarr

MITgcm output from a wind and thermally driven channel with a ridge at 5km resolution and interior restored tracers

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/channel.yaml") ds = cat["run_tracers_restored_zarr"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

time_resolution 3 day snapshots
duration 16.5 years
uploader_github charlesbluca
uploader_email charles@ldeo.columbia.edu
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • XC: 400
    • XG: 400
    • YC: 400
    • YG: 400
    • Z: 40
    • Zl: 40
    • Zp1: 41
    • Zu: 40
    • layer_1TH_bounds: 43
    • layer_1TH_center: 42
    • layer_1TH_interface: 41
    • time: 1980
    • Depth
      (YC, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      XC YC
      long_name :
      ocean depth
      standard_name :
      ocean_depth
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • PHrefC
      (Z)
      float32
      dask.array<chunksize=(1,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 160 B 4 B
      Shape (40,) (1,)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      40 1
    • PHrefF
      (Zp1)
      float32
      dask.array<chunksize=(41,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 164 B 164 B
      Shape (41,) (41,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      41 1
    • XC
      (XC)
      float32
      2500.0 7500.0 ... 1997500.0
      axis :
      X
      coordinate :
      YC XC
      long_name :
      x coordinate
      standard_name :
      plane_x_coordinate
      units :
      m
      array([   2500.,    7500.,   12500., ..., 1987500., 1992500., 1997500.],
            dtype=float32)
    • XG
      (XG)
      float32
      0.0 5000.0 ... 1990000.0 1995000.0
      axis :
      X
      c_grid_axis_shift :
      -0.5
      coordinate :
      YG XG
      long_name :
      x coordinate
      standard_name :
      plane_x_coordinate_at_f_location
      units :
      m
      array([      0.,    5000.,   10000., ..., 1985000., 1990000., 1995000.],
            dtype=float32)
    • YC
      (YC)
      float32
      2500.0 7500.0 ... 1997500.0
      axis :
      Y
      coordinate :
      YC XC
      long_name :
      y coordinate
      standard_name :
      plane_y_coordinate
      units :
      m
      array([   2500.,    7500.,   12500., ..., 1987500., 1992500., 1997500.],
            dtype=float32)
    • YG
      (YG)
      float32
      0.0 5000.0 ... 1990000.0 1995000.0
      axis :
      Y
      c_grid_axis_shift :
      -0.5
      long_name :
      y coordinate
      standard_name :
      plane_y_coordinate_at_f_location
      units :
      m
      array([      0.,    5000.,   10000., ..., 1985000., 1990000., 1995000.],
            dtype=float32)
    • Z
      (Z)
      float32
      -5.0 -15.0 ... -2830.5 -2933.5
      axis :
      Z
      long_name :
      vertical coordinate of cell center
      positive :
      down
      standard_name :
      depth
      units :
      m
      array([   -5. ,   -15. ,   -25. ,   -36. ,   -49. ,   -64. ,   -81.5,  -102. ,
              -126. ,  -154. ,  -187. ,  -226. ,  -272. ,  -327. ,  -393. ,  -471.5,
              -565. ,  -667.5,  -770.5,  -873.5,  -976.5, -1079.5, -1182.5, -1285.5,
             -1388.5, -1491.5, -1594.5, -1697.5, -1800.5, -1903.5, -2006.5, -2109.5,
             -2212.5, -2315.5, -2418.5, -2521.5, -2624.5, -2727.5, -2830.5, -2933.5],
            dtype=float32)
    • Zl
      (Zl)
      float32
      0.0 -10.0 -20.0 ... -2779.0 -2882.0
      axis :
      Z
      c_grid_axis_shift :
      -0.5
      long_name :
      vertical coordinate of upper cell interface
      positive :
      down
      standard_name :
      depth_at_upper_w_location
      units :
      m
      array([    0.,   -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,
              -139.,  -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,
              -719.,  -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543.,
             -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470.,
             -2573., -2676., -2779., -2882.], dtype=float32)
    • Zp1
      (Zp1)
      float32
      0.0 -10.0 -20.0 ... -2882.0 -2985.0
      axis :
      Z
      c_grid_axis_shift :
      [-0.5, 0.5]
      long_name :
      vertical coordinate of cell interface
      positive :
      down
      standard_name :
      depth_at_w_location
      units :
      m
      array([    0.,   -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,
              -139.,  -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,
              -719.,  -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543.,
             -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470.,
             -2573., -2676., -2779., -2882., -2985.], dtype=float32)
    • Zu
      (Zu)
      float32
      -10.0 -20.0 ... -2882.0 -2985.0
      axis :
      Z
      c_grid_axis_shift :
      0.5
      long_name :
      vertical coordinate of lower cell interface
      positive :
      down
      standard_name :
      depth_at_lower_w_location
      units :
      m
      array([  -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,  -139.,
              -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,  -719.,
              -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543., -1646.,
             -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470., -2573.,
             -2676., -2779., -2882., -2985.], dtype=float32)
    • drC
      (Zp1)
      float32
      dask.array<chunksize=(41,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size_at_w_location
      units :
      m
      Array Chunk
      Bytes 164 B 164 B
      Shape (41,) (41,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      41 1
    • drF
      (Z)
      float32
      dask.array<chunksize=(1,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size
      units :
      m
      Array Chunk
      Bytes 160 B 4 B
      Shape (40,) (1,)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      40 1
    • dxC
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dxG
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dyC
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dyG
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • hFacC
      (Z, YC, XC)
      float32
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction
      Array Chunk
      Bytes 25.60 MB 640.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • hFacS
      (Z, YG, XC)
      float32
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 25.60 MB 640.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • hFacW
      (Z, YC, XG)
      float32
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 25.60 MB 640.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • iter
      (time)
      int64
      dask.array<chunksize=(35,), meta=np.ndarray>
      long_name :
      model timestep number
      standard_name :
      timestep
      Array Chunk
      Bytes 15.84 kB 280 B
      Shape (1980,) (35,)
      Count 58 Tasks 57 Chunks
      Type int64 numpy.ndarray
      1980 1
    • layer_1TH_bounds
      (layer_1TH_bounds)
      float32
      -0.2 0.0 0.2 0.4 ... 7.8 8.0 8.2
      axis :
      1TH
      c_grid_axis_shift :
      -0.5
      long_name :
      boundaries points of layer 1TH
      standard_name :
      ocean_layer_coordinate_1TH_bounds
      array([-0.2,  0. ,  0.2,  0.4,  0.6,  0.8,  1. ,  1.2,  1.4,  1.6,  1.8,  2. ,
              2.2,  2.4,  2.6,  2.8,  3. ,  3.2,  3.4,  3.6,  3.8,  4. ,  4.2,  4.4,
              4.6,  4.8,  5. ,  5.2,  5.4,  5.6,  5.8,  6. ,  6.2,  6.4,  6.6,  6.8,
              7. ,  7.2,  7.4,  7.6,  7.8,  8. ,  8.2], dtype=float32)
    • layer_1TH_center
      (layer_1TH_center)
      float32
      -0.1 0.1 0.3 0.5 ... 7.7 7.9 8.1
      axis :
      1TH
      long_name :
      center points of layer 1TH
      standard_name :
      ocean_layer_coordinate_1TH_center
      array([-0.1,  0.1,  0.3,  0.5,  0.7,  0.9,  1.1,  1.3,  1.5,  1.7,  1.9,  2.1,
              2.3,  2.5,  2.7,  2.9,  3.1,  3.3,  3.5,  3.7,  3.9,  4.1,  4.3,  4.5,
              4.7,  4.9,  5.1,  5.3,  5.5,  5.7,  5.9,  6.1,  6.3,  6.5,  6.7,  6.9,
              7.1,  7.3,  7.5,  7.7,  7.9,  8.1], dtype=float32)
    • layer_1TH_interface
      (layer_1TH_interface)
      float32
      0.0 0.2 0.4 0.6 ... 7.4 7.6 7.8 8.0
      axis :
      1TH
      c_grid_axis_shift :
      -0.5
      long_name :
      interface points of layer 1TH
      standard_name :
      ocean_layer_coordinate_1TH_interface
      array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. , 2.2, 2.4, 2.6,
             2.8, 3. , 3.2, 3.4, 3.6, 3.8, 4. , 4.2, 4.4, 4.6, 4.8, 5. , 5.2, 5.4,
             5.6, 5.8, 6. , 6.2, 6.4, 6.6, 6.8, 7. , 7.2, 7.4, 7.6, 7.8, 8. ],
            dtype=float32)
    • maskC
      (Z, YC, XC)
      bool
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at center
      standard_name :
      sea_binary_mask_at_t_location
      Array Chunk
      Bytes 6.40 MB 160.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type bool numpy.ndarray
      400 400 40
    • maskS
      (Z, YG, XC)
      bool
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at interface
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 6.40 MB 160.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type bool numpy.ndarray
      400 400 40
    • maskW
      (Z, YC, XG)
      bool
      dask.array<chunksize=(1, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at interface
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 6.40 MB 160.00 kB
      Shape (40, 400, 400) (1, 400, 400)
      Count 41 Tasks 40 Chunks
      Type bool numpy.ndarray
      400 400 40
    • rA
      (YC, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      cell area
      standard_name :
      cell_area
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAs
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      long_name :
      cell area
      standard_name :
      cell_area_at_v_location
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAw
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell area
      standard_name :
      cell_area_at_u_location
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAz
      (YG, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XG
      long_name :
      cell area
      standard_name :
      cell_area_at_f_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • time
      (time)
      timedelta64[ns]
      61023 days ... 66960 days
      axis :
      T
      calendar :
      gregorian
      long_name :
      Time
      standard_name :
      time
      array([5272387200000000000, 5272646400000000000, 5272905600000000000, ...,
             5784825600000000000, 5785084800000000000, 5785344000000000000],
            dtype='timedelta64[ns]')
    • Eta
      (time, YC, XC)
      float32
      dask.array<chunksize=(35, 400, 400), meta=np.ndarray>
      long_name :
      Surface Height Anomaly
      standard_name :
      ETAN
      units :
      m
      Array Chunk
      Bytes 1.27 GB 22.40 MB
      Shape (1980, 400, 400) (35, 400, 400)
      Count 58 Tasks 57 Chunks
      Type float32 numpy.ndarray
      400 400 1980
    • PH
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Hydrostatic Pressure Pot.(p/rho) Anomaly
      standard_name :
      sea_water_dynamic_pressue
      units :
      m2 s-2
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PHL
      (time, YC, XC)
      float32
      dask.array<chunksize=(35, 400, 400), meta=np.ndarray>
      long_name :
      Bottom Pressure Pot.(p/rho) Anomaly
      standard_name :
      sea_water_dynamic_pressure_at_sea_floor
      units :
      m2 s-2
      Array Chunk
      Bytes 1.27 GB 22.40 MB
      Shape (1980, 400, 400) (35, 400, 400)
      Count 58 Tasks 57 Chunks
      Type float32 numpy.ndarray
      400 400 1980
    • PTRACER01
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER01
      standard_name :
      PTRACER01_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER02
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER02
      standard_name :
      PTRACER02_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER03
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER03
      standard_name :
      PTRACER03_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER04
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER04
      standard_name :
      PTRACER04_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER05
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER05
      standard_name :
      PTRACER05_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER06
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER06
      standard_name :
      PTRACER06_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER07
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER07
      standard_name :
      PTRACER07_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER08
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER08
      standard_name :
      PTRACER08_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER09
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER09
      standard_name :
      PTRACER09_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER10
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER10
      standard_name :
      PTRACER10_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER11
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER11
      standard_name :
      PTRACER11_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER12
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER12
      standard_name :
      PTRACER12_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER13
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER13
      standard_name :
      PTRACER13_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER14
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER14
      standard_name :
      PTRACER14_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER15
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER15
      standard_name :
      PTRACER15_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER16
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER16
      standard_name :
      PTRACER16_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER17
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER17
      standard_name :
      PTRACER17_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER18
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER18
      standard_name :
      PTRACER18_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER19
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER19
      standard_name :
      PTRACER19_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • PTRACER20
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Concentration of PTRACER20
      standard_name :
      PTRACER20_concentration
      units :
      kg m-3
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • T
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Potential Temperature
      standard_name :
      sea_water_potential_temperature
      units :
      degree_Celcius
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • U
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Zonal Component of Velocity
      mate :
      V
      standard_name :
      sea_water_x_velocity
      units :
      m s-1
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • V
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Meridional Component of Velocity
      mate :
      U
      standard_name :
      sea_water_y_velocity
      units :
      m s-1
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40
    • W
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(35, 1, 400, 400), meta=np.ndarray>
      long_name :
      Vertical Component of Velocity
      standard_name :
      sea_water_z_velocity
      units :
      m s-1
      Array Chunk
      Bytes 50.69 GB 22.40 MB
      Shape (1980, 40, 400, 400) (35, 1, 400, 400)
      Count 2281 Tasks 2280 Chunks
      Type float32 numpy.ndarray
      1980 1 400 400 40