channel_ridge_05km_float_run

MITgcm output from a wind and thermally driven channel with a ridge at 5km resolution (model vars)

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/channel.yaml") ds = cat["channel_ridge_05km_float_run"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

time_resolution 3 day average
duration 5 years
uploader_github cspencerjones
uploader_email spencerj@ldeo.columbia.edu
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • XC: 400
    • XG: 400
    • YC: 400
    • YG: 400
    • Z: 40
    • Zl: 40
    • Zp1: 41
    • Zu: 40
    • time: 609
    • Depth
      (YC, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      XC YC
      long_name :
      ocean depth
      standard_name :
      ocean_depth
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • PHrefC
      (Z)
      float32
      dask.array<chunksize=(40,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 160 B 160 B
      Shape (40,) (40,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      40 1
    • PHrefF
      (Zp1)
      float32
      dask.array<chunksize=(41,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 164 B 164 B
      Shape (41,) (41,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      41 1
    • XC
      (XC)
      float32
      2500.0 7500.0 ... 1997500.0
      axis :
      X
      coordinate :
      YC XC
      long_name :
      longitude
      standard_name :
      longitude
      units :
      degrees_east
      array([   2500.,    7500.,   12500., ..., 1987500., 1992500., 1997500.],
            dtype=float32)
    • XG
      (XG)
      float32
      0.0 5000.0 ... 1990000.0 1995000.0
      axis :
      X
      c_grid_axis_shift :
      -0.5
      coordinate :
      YG XG
      long_name :
      longitude
      standard_name :
      longitude_at_f_location
      units :
      degrees_east
      array([      0.,    5000.,   10000., ..., 1985000., 1990000., 1995000.],
            dtype=float32)
    • YC
      (YC)
      float32
      2500.0 7500.0 ... 1997500.0
      axis :
      Y
      coordinate :
      YC XC
      long_name :
      latitude
      standard_name :
      latitude
      units :
      degrees_north
      array([   2500.,    7500.,   12500., ..., 1987500., 1992500., 1997500.],
            dtype=float32)
    • YG
      (YG)
      float32
      0.0 5000.0 ... 1990000.0 1995000.0
      axis :
      Y
      c_grid_axis_shift :
      -0.5
      long_name :
      latitude
      standard_name :
      latitude_at_f_location
      units :
      degrees_north
      array([      0.,    5000.,   10000., ..., 1985000., 1990000., 1995000.],
            dtype=float32)
    • Z
      (Z)
      float32
      -5.0 -15.0 ... -2830.5 -2933.5
      axis :
      Z
      long_name :
      vertical coordinate of cell center
      positive :
      down
      standard_name :
      depth
      units :
      m
      array([   -5. ,   -15. ,   -25. ,   -36. ,   -49. ,   -64. ,   -81.5,  -102. ,
              -126. ,  -154. ,  -187. ,  -226. ,  -272. ,  -327. ,  -393. ,  -471.5,
              -565. ,  -667.5,  -770.5,  -873.5,  -976.5, -1079.5, -1182.5, -1285.5,
             -1388.5, -1491.5, -1594.5, -1697.5, -1800.5, -1903.5, -2006.5, -2109.5,
             -2212.5, -2315.5, -2418.5, -2521.5, -2624.5, -2727.5, -2830.5, -2933.5],
            dtype=float32)
    • Zl
      (Zl)
      float32
      0.0 -10.0 -20.0 ... -2779.0 -2882.0
      axis :
      Z
      c_grid_axis_shift :
      -0.5
      long_name :
      vertical coordinate of upper cell interface
      positive :
      down
      standard_name :
      depth_at_upper_w_location
      units :
      m
      array([    0.,   -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,
              -139.,  -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,
              -719.,  -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543.,
             -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470.,
             -2573., -2676., -2779., -2882.], dtype=float32)
    • Zp1
      (Zp1)
      float32
      0.0 -10.0 -20.0 ... -2882.0 -2985.0
      axis :
      Z
      c_grid_axis_shift :
      [-0.5, 0.5]
      long_name :
      vertical coordinate of cell interface
      positive :
      down
      standard_name :
      depth_at_w_location
      units :
      m
      array([    0.,   -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,
              -139.,  -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,
              -719.,  -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543.,
             -1646., -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470.,
             -2573., -2676., -2779., -2882., -2985.], dtype=float32)
    • Zu
      (Zu)
      float32
      -10.0 -20.0 ... -2882.0 -2985.0
      axis :
      Z
      c_grid_axis_shift :
      0.5
      long_name :
      vertical coordinate of lower cell interface
      positive :
      down
      standard_name :
      depth_at_lower_w_location
      units :
      m
      array([  -10.,   -20.,   -30.,   -42.,   -56.,   -72.,   -91.,  -113.,  -139.,
              -169.,  -205.,  -247.,  -297.,  -357.,  -429.,  -514.,  -616.,  -719.,
              -822.,  -925., -1028., -1131., -1234., -1337., -1440., -1543., -1646.,
             -1749., -1852., -1955., -2058., -2161., -2264., -2367., -2470., -2573.,
             -2676., -2779., -2882., -2985.], dtype=float32)
    • drC
      (Zp1)
      float32
      dask.array<chunksize=(41,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size_at_w_location
      units :
      m
      Array Chunk
      Bytes 164 B 164 B
      Shape (41,) (41,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      41 1
    • drF
      (Z)
      float32
      dask.array<chunksize=(40,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size
      units :
      m
      Array Chunk
      Bytes 160 B 160 B
      Shape (40,) (40,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      40 1
    • dxC
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dxG
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dyC
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • dyG
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • hFacC
      (Z, YC, XC)
      float32
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction
      Array Chunk
      Bytes 25.60 MB 25.60 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • hFacS
      (Z, YG, XC)
      float32
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 25.60 MB 25.60 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • hFacW
      (Z, YC, XG)
      float32
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 25.60 MB 25.60 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400 40
    • iter
      (time)
      int64
      dask.array<chunksize=(4,), meta=np.ndarray>
      long_name :
      model timestep number
      standard_name :
      timestep
      Array Chunk
      Bytes 4.87 kB 32 B
      Shape (609,) (4,)
      Count 154 Tasks 153 Chunks
      Type int64 numpy.ndarray
      609 1
    • maskC
      (Z, YC, XC)
      bool
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at center
      standard_name :
      sea_binary_mask_at_t_location
      Array Chunk
      Bytes 6.40 MB 6.40 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type bool numpy.ndarray
      400 400 40
    • maskS
      (Z, YG, XC)
      bool
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at interface
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 6.40 MB 6.40 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type bool numpy.ndarray
      400 400 40
    • maskW
      (Z, YC, XG)
      bool
      dask.array<chunksize=(40, 400, 400), meta=np.ndarray>
      long_name :
      mask denoting wet point at interface
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 6.40 MB 6.40 MB
      Shape (40, 400, 400) (40, 400, 400)
      Count 2 Tasks 1 Chunks
      Type bool numpy.ndarray
      400 400 40
    • rA
      (YC, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      cell area
      standard_name :
      cell_area
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAs
      (YG, XC)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      long_name :
      cell area
      standard_name :
      cell_area_at_v_location
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAw
      (YC, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell area
      standard_name :
      cell_area_at_u_location
      units :
      m2
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • rAz
      (YG, XG)
      float32
      dask.array<chunksize=(400, 400), meta=np.ndarray>
      coordinate :
      YG XG
      long_name :
      cell area
      standard_name :
      cell_area_at_f_location
      units :
      m
      Array Chunk
      Bytes 640.00 kB 640.00 kB
      Shape (400, 400) (400, 400)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      400 400
    • time
      (time)
      object
      0000-01-01 02:40:00 ... 0005-01-25 02:40:00
      array([cftime.Datetime360Day(0, 1, 1, 2, 40, 0, 0),
             cftime.Datetime360Day(0, 1, 4, 2, 40, 0, 0),
             cftime.Datetime360Day(0, 1, 7, 2, 40, 0, 0), ...,
             cftime.Datetime360Day(5, 1, 19, 2, 40, 0, 0),
             cftime.Datetime360Day(5, 1, 22, 2, 40, 0, 0),
             cftime.Datetime360Day(5, 1, 25, 2, 40, 0, 0)], dtype=object)
    • ETAN
      (time, YC, XC)
      float32
      dask.array<chunksize=(4, 400, 400), meta=np.ndarray>
      long_name :
      Surface Height Anomaly, mean over previous 3 days
      standard_name :
      ETAN
      units :
      m
      Array Chunk
      Bytes 389.76 MB 2.56 MB
      Shape (609, 400, 400) (4, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      400 400 609
    • ETANSQ
      (time, YC, XC)
      float32
      dask.array<chunksize=(4, 400, 400), meta=np.ndarray>
      long_name :
      Square of Surface Height Anomaly, mean over previous 3 days
      standard_name :
      ETANSQ
      units :
      m^2
      Array Chunk
      Bytes 389.76 MB 2.56 MB
      Shape (609, 400, 400) (4, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      400 400 609
    • PHIBOT
      (time, YC, XC)
      float32
      dask.array<chunksize=(4, 400, 400), meta=np.ndarray>
      long_name :
      Bottom Pressure Pot.(p/rho) Anomaly, mean over previous 3 days
      standard_name :
      PHIBOT
      units :
      m^2/s^2
      Array Chunk
      Bytes 389.76 MB 2.56 MB
      Shape (609, 400, 400) (4, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      400 400 609
    • PHIBOTSQ
      (time, YC, XC)
      float32
      dask.array<chunksize=(4, 400, 400), meta=np.ndarray>
      long_name :
      Square of Bottom Pressure Pot.(p/rho) Anomaly, mean over previous 3 days
      standard_name :
      PHIBOTSQ
      units :
      m^4/s^4
      Array Chunk
      Bytes 389.76 MB 2.56 MB
      Shape (609, 400, 400) (4, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      400 400 609
    • PHIHYD
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Hydrostatic Pressure Pot.(p/rho) Anomaly, mean over previous 3 days
      standard_name :
      PHIHYD
      units :
      m^2/s^2
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • THETA
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      temperature, mean over previous 3 days
      standard_name :
      THETA
      units :
      degC
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • THETASQ
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Square of Temperature, mean over previous 3 days
      standard_name :
      THETASQ
      units :
      degC^2
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • UVEL
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Zonal Component of Velocity (m/s), mean over previous 3 days
      mate :
      VVEL
      standard_name :
      UVEL
      units :
      m/s
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • UVELSQ
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Square of Zonal Comp of Velocity (m^2/s^2), mean over previous 3 days
      mate :
      VVELSQ
      standard_name :
      UVELSQ
      units :
      m^2/s^2
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • UV_VEL_Z
      (time, Z, YG, XG)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Meridional Transport of Zonal Momentum (m^2/s^2), mean over previous 3 days
      mate :
      UV_VEL_Z
      standard_name :
      UV_VEL_Z
      units :
      m^2/s^2
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • VVEL
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Meridional Component of Velocity (m/s), mean over previous 3 days
      mate :
      UVEL
      standard_name :
      VVEL
      units :
      m/s
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • VVELSQ
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Square of Meridional Comp of Velocity (m^2/s^2), mean over previous 3 days
      mate :
      UVELSQ
      standard_name :
      VVELSQ
      units :
      m^2/s^2
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
    • WVEL
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(4, 40, 400, 400), meta=np.ndarray>
      long_name :
      Vertical Component of Velocity (r_units/s), mean over previous 3 days
      standard_name :
      WVEL
      units :
      m/s
      Array Chunk
      Bytes 15.59 GB 102.40 MB
      Shape (609, 40, 400, 400) (4, 40, 400, 400)
      Count 154 Tasks 153 Chunks
      Type float32 numpy.ndarray
      609 1 400 400 40
  • history :
    06/06/2020, cspencerjones updated times to be in seconds since 0000-01-01
    institution :
    Lamont Doherty Earth Observatory, Columbia University
    references :
    Model: https://doi.org/10.1029/96JC02775, Configuration: https://doi.org/10.1016/j.ocemod.2013.07.004
    source :
    MITgcm checkpoint66b
    title :
    3 day mean data from re-entrant channel simulation