MITgcm_channel_flatbottom_02km_run01_phys-mon
MITgcm channel simulations with flat bottom at 2km resolution physics field monthly mean climatology
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/channel.yaml")
ds = cat["MITgcm_channel_flatbottom_02km_run01_phys-mon"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
uploader_github | roxyboy |
uploader_email | takaya@ldeo.columbia.edu |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- XC: 500
- XG: 500
- YC: 1000
- YG: 1000
- Z: 76
- Zl: 76
- Zp1: 77
- Zu: 76
- time: 12
- Depth(YC, XC)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- XC YC
- long_name :
- ocean depth
- standard_name :
- ocean_depth
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - PHrefC(Z)float32dask.array<chunksize=(76,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 304 B 304 B Shape (76,) (76,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - PHrefF(Zp1)float32dask.array<chunksize=(77,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 308 B 308 B Shape (77,) (77,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - XC(XC)float321000.0 3000.0 ... 997000.0 999000.0
- axis :
- X
- coordinate :
- YC XC
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([ 1000., 3000., 5000., ..., 995000., 997000., 999000.], dtype=float32)
- XG(XG)float320.0 2000.0 ... 996000.0 998000.0
- axis :
- X
- c_grid_axis_shift :
- -0.5
- coordinate :
- YG XG
- long_name :
- longitude
- standard_name :
- longitude_at_f_location
- units :
- degrees_east
array([ 0., 2000., 4000., ..., 994000., 996000., 998000.], dtype=float32)
- YC(YC)float321000.0 3000.0 ... 1999000.0
- axis :
- Y
- coordinate :
- YC XC
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
array([1.000e+03, 3.000e+03, 5.000e+03, ..., 1.995e+06, 1.997e+06, 1.999e+06], dtype=float32)
- YG(YG)float320.0 2000.0 ... 1996000.0 1998000.0
- axis :
- Y
- c_grid_axis_shift :
- -0.5
- long_name :
- latitude
- standard_name :
- latitude_at_f_location
- units :
- degrees_north
array([ 0., 2000., 4000., ..., 1994000., 1996000., 1998000.], dtype=float32)
- Z(Z)float32-0.5 -1.57 ... -2757.325 -2912.665
- axis :
- Z
- long_name :
- vertical coordinate of cell center
- positive :
- down
- standard_name :
- depth
- units :
- m
array([-5.000000e-01, -1.570000e+00, -2.790000e+00, -4.185000e+00, -5.780000e+00, -7.595000e+00, -9.660000e+00, -1.201000e+01, -1.468000e+01, -1.770500e+01, -2.112500e+01, -2.499000e+01, -2.934500e+01, -3.424000e+01, -3.972500e+01, -4.585500e+01, -5.269000e+01, -6.028000e+01, -6.868500e+01, -7.796500e+01, -8.817500e+01, -9.937000e+01, -1.116000e+02, -1.249150e+02, -1.393650e+02, -1.549900e+02, -1.718250e+02, -1.899000e+02, -2.092350e+02, -2.298550e+02, -2.517700e+02, -2.749850e+02, -2.995050e+02, -3.253200e+02, -3.524200e+02, -3.807900e+02, -4.104100e+02, -4.412550e+02, -4.733050e+02, -5.065400e+02, -5.409350e+02, -5.764650e+02, -6.131100e+02, -6.508550e+02, -6.896850e+02, -7.295950e+02, -7.705850e+02, -8.126600e+02, -8.558350e+02, -9.001350e+02, -9.455950e+02, -9.922600e+02, -1.040180e+03, -1.089425e+03, -1.140080e+03, -1.192235e+03, -1.246005e+03, -1.301520e+03, -1.358920e+03, -1.418375e+03, -1.480075e+03, -1.544225e+03, -1.611060e+03, -1.680845e+03, -1.753875e+03, -1.830475e+03, -1.911015e+03, -1.995905e+03, -2.085595e+03, -2.180595e+03, -2.281470e+03, -2.388845e+03, -2.503415e+03, -2.625955e+03, -2.757325e+03, -2.912665e+03], dtype=float32)
- Zl(Zl)float320.0 -1.0 ... -2689.32 -2825.33
- axis :
- Z
- c_grid_axis_shift :
- -0.5
- long_name :
- vertical coordinate of upper cell interface
- positive :
- down
- standard_name :
- depth_at_upper_w_location
- units :
- m
array([ 0.00000e+00, -1.00000e+00, -2.14000e+00, -3.44000e+00, -4.93000e+00, -6.63000e+00, -8.56000e+00, -1.07600e+01, -1.32600e+01, -1.61000e+01, -1.93100e+01, -2.29400e+01, -2.70400e+01, -3.16500e+01, -3.68300e+01, -4.26200e+01, -4.90900e+01, -5.62900e+01, -6.42700e+01, -7.31000e+01, -8.28300e+01, -9.35200e+01, -1.05220e+02, -1.17980e+02, -1.31850e+02, -1.46880e+02, -1.63100e+02, -1.80550e+02, -1.99250e+02, -2.19220e+02, -2.40490e+02, -2.63050e+02, -2.86920e+02, -3.12090e+02, -3.38550e+02, -3.66290e+02, -3.95290e+02, -4.25530e+02, -4.56980e+02, -4.89630e+02, -5.23450e+02, -5.58420e+02, -5.94510e+02, -6.31710e+02, -6.70000e+02, -7.09370e+02, -7.49820e+02, -7.91350e+02, -8.33970e+02, -8.77700e+02, -9.22570e+02, -9.68620e+02, -1.01590e+03, -1.06446e+03, -1.11439e+03, -1.16577e+03, -1.21870e+03, -1.27331e+03, -1.32973e+03, -1.38811e+03, -1.44864e+03, -1.51151e+03, -1.57694e+03, -1.64518e+03, -1.71651e+03, -1.79124e+03, -1.86971e+03, -1.95232e+03, -2.03949e+03, -2.13170e+03, -2.22949e+03, -2.33345e+03, -2.44424e+03, -2.56259e+03, -2.68932e+03, -2.82533e+03], dtype=float32)
- Zp1(Zp1)float320.0 -1.0 -2.14 ... -2825.33 -3000.0
- axis :
- Z
- c_grid_axis_shift :
- [-0.5, 0.5]
- long_name :
- vertical coordinate of cell interface
- positive :
- down
- standard_name :
- depth_at_w_location
- units :
- m
array([ 0.00000e+00, -1.00000e+00, -2.14000e+00, -3.44000e+00, -4.93000e+00, -6.63000e+00, -8.56000e+00, -1.07600e+01, -1.32600e+01, -1.61000e+01, -1.93100e+01, -2.29400e+01, -2.70400e+01, -3.16500e+01, -3.68300e+01, -4.26200e+01, -4.90900e+01, -5.62900e+01, -6.42700e+01, -7.31000e+01, -8.28300e+01, -9.35200e+01, -1.05220e+02, -1.17980e+02, -1.31850e+02, -1.46880e+02, -1.63100e+02, -1.80550e+02, -1.99250e+02, -2.19220e+02, -2.40490e+02, -2.63050e+02, -2.86920e+02, -3.12090e+02, -3.38550e+02, -3.66290e+02, -3.95290e+02, -4.25530e+02, -4.56980e+02, -4.89630e+02, -5.23450e+02, -5.58420e+02, -5.94510e+02, -6.31710e+02, -6.70000e+02, -7.09370e+02, -7.49820e+02, -7.91350e+02, -8.33970e+02, -8.77700e+02, -9.22570e+02, -9.68620e+02, -1.01590e+03, -1.06446e+03, -1.11439e+03, -1.16577e+03, -1.21870e+03, -1.27331e+03, -1.32973e+03, -1.38811e+03, -1.44864e+03, -1.51151e+03, -1.57694e+03, -1.64518e+03, -1.71651e+03, -1.79124e+03, -1.86971e+03, -1.95232e+03, -2.03949e+03, -2.13170e+03, -2.22949e+03, -2.33345e+03, -2.44424e+03, -2.56259e+03, -2.68932e+03, -2.82533e+03, -3.00000e+03], dtype=float32)
- Zu(Zu)float32-1.0 -2.14 ... -2825.33 -3000.0
- axis :
- Z
- c_grid_axis_shift :
- 0.5
- long_name :
- vertical coordinate of lower cell interface
- positive :
- down
- standard_name :
- depth_at_lower_w_location
- units :
- m
array([-1.00000e+00, -2.14000e+00, -3.44000e+00, -4.93000e+00, -6.63000e+00, -8.56000e+00, -1.07600e+01, -1.32600e+01, -1.61000e+01, -1.93100e+01, -2.29400e+01, -2.70400e+01, -3.16500e+01, -3.68300e+01, -4.26200e+01, -4.90900e+01, -5.62900e+01, -6.42700e+01, -7.31000e+01, -8.28300e+01, -9.35200e+01, -1.05220e+02, -1.17980e+02, -1.31850e+02, -1.46880e+02, -1.63100e+02, -1.80550e+02, -1.99250e+02, -2.19220e+02, -2.40490e+02, -2.63050e+02, -2.86920e+02, -3.12090e+02, -3.38550e+02, -3.66290e+02, -3.95290e+02, -4.25530e+02, -4.56980e+02, -4.89630e+02, -5.23450e+02, -5.58420e+02, -5.94510e+02, -6.31710e+02, -6.70000e+02, -7.09370e+02, -7.49820e+02, -7.91350e+02, -8.33970e+02, -8.77700e+02, -9.22570e+02, -9.68620e+02, -1.01590e+03, -1.06446e+03, -1.11439e+03, -1.16577e+03, -1.21870e+03, -1.27331e+03, -1.32973e+03, -1.38811e+03, -1.44864e+03, -1.51151e+03, -1.57694e+03, -1.64518e+03, -1.71651e+03, -1.79124e+03, -1.86971e+03, -1.95232e+03, -2.03949e+03, -2.13170e+03, -2.22949e+03, -2.33345e+03, -2.44424e+03, -2.56259e+03, -2.68932e+03, -2.82533e+03, -3.00000e+03], dtype=float32)
- drC(Zp1)float64dask.array<chunksize=(77,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size_at_w_location
- units :
- m
Array Chunk Bytes 616 B 616 B Shape (77,) (77,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - drF(Z)float32dask.array<chunksize=(76,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size
- units :
- m
Array Chunk Bytes 304 B 304 B Shape (76,) (76,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dxC(YC, XG)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_u_location
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dxG(YG, XC)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_v_location
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyC(YG, XC)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_v_location
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyG(YC, XG)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_u_location
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacC(Z, YC, XC)float32dask.array<chunksize=(76, 1000, 500), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction
Array Chunk Bytes 152.00 MB 152.00 MB Shape (76, 1000, 500) (76, 1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacS(Z, YG, XC)float32dask.array<chunksize=(76, 1000, 500), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_v_location
Array Chunk Bytes 152.00 MB 152.00 MB Shape (76, 1000, 500) (76, 1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacW(Z, YC, XG)float32dask.array<chunksize=(76, 1000, 500), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_u_location
Array Chunk Bytes 152.00 MB 152.00 MB Shape (76, 1000, 500) (76, 1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - iter(time)int64dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- model timestep number
- standard_name :
- timestep
Array Chunk Bytes 96 B 8 B Shape (12,) (1,) Count 13 Tasks 12 Chunks Type int64 numpy.ndarray - rA(YC, XC)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- cell area
- standard_name :
- cell_area
- units :
- m2
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAs(YG, XC)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- long_name :
- cell area
- standard_name :
- cell_area_at_v_location
- units :
- m2
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAw(YC, XG)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell area
- standard_name :
- cell_area_at_u_location
- units :
- m2
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAz(YG, XG)float32dask.array<chunksize=(1000, 500), meta=np.ndarray>
- coordinate :
- YG XG
- long_name :
- cell area
- standard_name :
- cell_area_at_f_location
- units :
- m
Array Chunk Bytes 2.00 MB 2.00 MB Shape (1000, 500) (1000, 500) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - time(time)timedelta64[ns]1650 days 1680 days ... 1980 days
- axis :
- T
- calendar :
- gregorian
- long_name :
- Time
- standard_name :
- time
array([142560000000000000, 145152000000000000, 147744000000000000, 150336000000000000, 152928000000000000, 155520000000000000, 158112000000000000, 160704000000000000, 163296000000000000, 165888000000000000, 168480000000000000, 171072000000000000], dtype='timedelta64[ns]')
- PhHytave(time, Z, YC, XC)float32dask.array<chunksize=(1, 76, 1000, 500), meta=np.ndarray>
- long_name :
- Hydrostatic Pressure Pot.(p/rho) Anomaly
- standard_name :
- sea_water_dynamic_pressue
- units :
- m2 s-2
Array Chunk Bytes 1.82 GB 152.00 MB Shape (12, 76, 1000, 500) (1, 76, 1000, 500) Count 13 Tasks 12 Chunks Type float32 numpy.ndarray - Ttave(time, Z, YC, XC)float32dask.array<chunksize=(1, 76, 1000, 500), meta=np.ndarray>
- long_name :
- Potential Temperature
- standard_name :
- sea_water_potential_temperature
- units :
- degree_Celcius
Array Chunk Bytes 1.82 GB 152.00 MB Shape (12, 76, 1000, 500) (1, 76, 1000, 500) Count 13 Tasks 12 Chunks Type float32 numpy.ndarray - uVeltave(time, Z, YC, XG)float32dask.array<chunksize=(1, 76, 1000, 500), meta=np.ndarray>
- long_name :
- Zonal Component of Velocity
- mate :
- vVeltave
- standard_name :
- sea_water_x_velocity
- units :
- m s-1
Array Chunk Bytes 1.82 GB 152.00 MB Shape (12, 76, 1000, 500) (1, 76, 1000, 500) Count 13 Tasks 12 Chunks Type float32 numpy.ndarray - vVeltave(time, Z, YG, XC)float32dask.array<chunksize=(1, 76, 1000, 500), meta=np.ndarray>
- long_name :
- Meridional Component of Velocity
- mate :
- uVeltave
- standard_name :
- sea_water_y_velocity
- units :
- m s-1
Array Chunk Bytes 1.82 GB 152.00 MB Shape (12, 76, 1000, 500) (1, 76, 1000, 500) Count 13 Tasks 12 Chunks Type float32 numpy.ndarray - wVeltave(time, Zl, YC, XC)float32dask.array<chunksize=(1, 76, 1000, 500), meta=np.ndarray>
- long_name :
- Vertical Component of Velocity
- standard_name :
- sea_water_z_velocity
- units :
- m s-1
Array Chunk Bytes 1.82 GB 152.00 MB Shape (12, 76, 1000, 500) (1, 76, 1000, 500) Count 13 Tasks 12 Chunks Type float32 numpy.ndarray