cesm_mom6_example
CESM MOM6 Ocean Model Example Data
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
ds = cat["cesm_mom6_example"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
uploader_github | gustavo-marques |
uploader_email | gmarques@ucar.edu |
url | https://github.com/NCAR/MOM6-cases |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- lath: 458
- latq: 458
- lonh: 540
- lonq: 540
- nv: 2
- scalar_axis: 1
- time: 24
- xh: 540
- xq: 540
- yh: 458
- yq: 458
- z_i: 35
- z_l: 34
- geolat(yh, xh)float64dask.array<chunksize=(458, 540), meta=np.ndarray>
- long_name :
- latitude at tracer (T) points
- units :
- degree
Array Chunk Bytes 1.98 MB 1.98 MB Shape (458, 540) (458, 540) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - geolatb(yq, xq)float64dask.array<chunksize=(458, 540), meta=np.ndarray>
- long_name :
- latitude at corner (Bu) points
- units :
- degree
Array Chunk Bytes 1.98 MB 1.98 MB Shape (458, 540) (458, 540) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - geolon(yh, xh)float64dask.array<chunksize=(458, 540), meta=np.ndarray>
- long_name :
- longitude at tracer (T) points
- units :
- degree
Array Chunk Bytes 1.98 MB 1.98 MB Shape (458, 540) (458, 540) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - geolonb(yq, xq)float64dask.array<chunksize=(458, 540), meta=np.ndarray>
- long_name :
- longitude at corner (Bu) points
- units :
- degree
Array Chunk Bytes 1.98 MB 1.98 MB Shape (458, 540) (458, 540) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - lath(lath)float64-79.2 -79.08 -78.95 ... 87.71 87.74
- cartesian_axis :
- Y
- long_name :
- Latitude
- units :
- degrees_north
array([-79.202602, -79.076995, -78.949944, ..., 87.641507, 87.706191, 87.738663])
- latq(latq)float64-79.14 -79.01 ... 87.73 87.74
- cartesian_axis :
- Y
- long_name :
- Latitude
- units :
- degrees_north
array([-79.139978, -79.013651, -78.885872, ..., 87.67781 , 87.726499, 87.7427 ])
- lonh(lonh)float64-286.7 -286.0 -285.3 ... 72.0 72.67
- cartesian_axis :
- X
- long_name :
- Longitude
- units :
- degrees_east
array([-286.666667, -286. , -285.333333, ..., 71.333333, 72. , 72.666667])
- lonq(lonq)float64-286.3 -285.7 -285.0 ... 72.33 73.0
- cartesian_axis :
- X
- long_name :
- Longitude
- units :
- degrees_east
array([-286.333333, -285.666667, -285. , ..., 71.666667, 72.333333, 73. ])
- nv(nv)float641.0 2.0
- cartesian_axis :
- N
- long_name :
- vertex number
- units :
- none
array([1., 2.])
- scalar_axis(scalar_axis)float640.0
- cartesian_axis :
- N
- long_name :
- none
- units :
- none
array([0.])
- time(time)object0001-01-16 12:00:00 ... 0002-12-16 12:00:00
- bounds :
- time_bnds
- calendar_type :
- NOLEAP
- cartesian_axis :
- T
- long_name :
- time
array([cftime.DatetimeNoLeap(1, 1, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 2, 15, 0, 0, 0, 0), cftime.DatetimeNoLeap(1, 3, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 4, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(1, 5, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 6, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(1, 7, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 8, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 9, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(1, 10, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(1, 11, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(1, 12, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 1, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 2, 15, 0, 0, 0, 0), cftime.DatetimeNoLeap(2, 3, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 4, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(2, 5, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 6, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(2, 7, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 8, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 9, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(2, 10, 16, 12, 0, 0, 0), cftime.DatetimeNoLeap(2, 11, 16, 0, 0, 0, 0), cftime.DatetimeNoLeap(2, 12, 16, 12, 0, 0, 0)], dtype=object)
- xh(xh)float64-286.7 -286.0 -285.3 ... 72.0 72.67
- cartesian_axis :
- X
- long_name :
- h point nominal longitude
- units :
- degrees_east
array([-286.666667, -286. , -285.333333, ..., 71.333333, 72. , 72.666667])
- xq(xq)float64-286.3 -285.7 -285.0 ... 72.33 73.0
- cartesian_axis :
- X
- long_name :
- q point nominal longitude
- units :
- degrees_east
array([-286.333333, -285.666667, -285. , ..., 71.666667, 72.333333, 73. ])
- yh(yh)float64-79.2 -79.08 -78.95 ... 87.71 87.74
- cartesian_axis :
- Y
- long_name :
- h point nominal latitude
- units :
- degrees_north
array([-79.202602, -79.076995, -78.949944, ..., 87.641507, 87.706191, 87.738663])
- yq(yq)float64-79.14 -79.01 ... 87.73 87.74
- cartesian_axis :
- Y
- long_name :
- q point nominal latitude
- units :
- degrees_north
array([-79.139978, -79.013651, -78.885872, ..., 87.67781 , 87.726499, 87.7427 ])
- z_i(z_i)float640.0 5.0 15.0 ... 5.75e+03 6.25e+03
- cartesian_axis :
- Z
- long_name :
- Depth at interface
- positive :
- down
- units :
- meters
array([0.000e+00, 5.000e+00, 1.500e+01, 2.500e+01, 4.000e+01, 6.250e+01, 8.750e+01, 1.125e+02, 1.375e+02, 1.750e+02, 2.250e+02, 2.750e+02, 3.500e+02, 4.500e+02, 5.500e+02, 6.500e+02, 7.500e+02, 8.500e+02, 9.500e+02, 1.050e+03, 1.150e+03, 1.250e+03, 1.350e+03, 1.450e+03, 1.625e+03, 1.875e+03, 2.250e+03, 2.750e+03, 3.250e+03, 3.750e+03, 4.250e+03, 4.750e+03, 5.250e+03, 5.750e+03, 6.250e+03])
- z_l(z_l)float642.5 10.0 20.0 ... 5.5e+03 6e+03
- cartesian_axis :
- Z
- edges :
- z_i
- long_name :
- Depth at cell center
- positive :
- down
- units :
- meters
array([2.5000e+00, 1.0000e+01, 2.0000e+01, 3.2500e+01, 5.1250e+01, 7.5000e+01, 1.0000e+02, 1.2500e+02, 1.5625e+02, 2.0000e+02, 2.5000e+02, 3.1250e+02, 4.0000e+02, 5.0000e+02, 6.0000e+02, 7.0000e+02, 8.0000e+02, 9.0000e+02, 1.0000e+03, 1.1000e+03, 1.2000e+03, 1.3000e+03, 1.4000e+03, 1.5375e+03, 1.7500e+03, 2.0625e+03, 2.5000e+03, 3.0000e+03, 3.5000e+03, 4.0000e+03, 4.5000e+03, 5.0000e+03, 5.5000e+03, 6.0000e+03])
- KE(time, z_l, yh, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean z_l:mean yh:mean xh:mean time: mean
- long_name :
- Layer kinetic energy per unit mass
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m2 s-2
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - KPP_OBLdepth(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Thickness of the surface Ocean Boundary Layer calculated by [CVMix] KPP
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- meter
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - MLD_0125(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Mixed layer depth (delta rho = 0.125)
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - SSH(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Sea Surface Height
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - SSS(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Sea Surface Salinity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- psu
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - SST(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Sea Surface Temperature
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- degC
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - average_DT(time)timedelta64[ns]dask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- Length of average period
Array Chunk Bytes 192 B 8 B Shape (24,) (1,) Count 25 Tasks 24 Chunks Type timedelta64[ns] numpy.ndarray - average_T1(time)objectdask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- Start time for average period
Array Chunk Bytes 192 B 8 B Shape (24,) (1,) Count 25 Tasks 24 Chunks Type object numpy.ndarray - average_T2(time)objectdask.array<chunksize=(1,), meta=np.ndarray>
- long_name :
- End time for average period
Array Chunk Bytes 192 B 8 B Shape (24,) (1,) Count 25 Tasks 24 Chunks Type object numpy.ndarray - friver(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Water Flux into Sea Water From Rivers
- standard_name :
- water_flux_into_sea_water_from_rivers
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- kg m-2 s-1
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - h(time, z_l, yh, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean z_l:sum yh:mean xh:mean time: mean
- long_name :
- Layer Thickness
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - hfds(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Surface ocean heat flux from SW+LW+latent+sensible+masstransfer+frazil
- standard_name :
- surface_downward_heat_flux_in_sea_water
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W m-2
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - hfsnthermds(time, yh, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean yh:mean xh:mean time: mean
- long_name :
- Latent Heat to Melt Frozen Precipitation
- standard_name :
- heat_flux_into_sea_water_due_to_snow_thermodynamics
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W m-2
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - rhoinsitu(time, z_l, yh, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean z_l:mean yh:mean xh:mean time: mean
- long_name :
- In situ density
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- kg m-3
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - salt(time, z_l, yh, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean z_l:mean yh:mean xh:mean time: mean
- long_name :
- Salinity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- psu
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - soga(time, scalar_axis)float64dask.array<chunksize=(1, 1), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- Global Mean Ocean Salinity
- standard_name :
- sea_water_salinity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- psu
Array Chunk Bytes 192 B 8 B Shape (24, 1) (1, 1) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - taux(time, yh, xq)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_methods :
- yh:mean xq:point time: mean
- interp_method :
- none
- long_name :
- Zonal surface stress from ocean interactions with atmos and ice
- standard_name :
- surface_downward_x_stress
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Pa
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - tauy(time, yq, xh)float64dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
- cell_methods :
- yq:point xh:mean time: mean
- interp_method :
- none
- long_name :
- Meridional surface stress ocean interactions with atmos and ice
- standard_name :
- surface_downward_y_stress
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Pa
Array Chunk Bytes 47.49 MB 1.98 MB Shape (24, 458, 540) (1, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - temp(time, z_l, yh, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_measures :
- area: area_t
- cell_methods :
- area:mean z_l:mean yh:mean xh:mean time: mean
- long_name :
- Potential Temperature
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- degC
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - thetaoga(time, scalar_axis)float64dask.array<chunksize=(1, 1), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- Global Mean Ocean Potential Temperature
- standard_name :
- sea_water_potential_temperature
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- degC
Array Chunk Bytes 192 B 8 B Shape (24, 1) (1, 1) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - time_bnds(time, nv)timedelta64[ns]dask.array<chunksize=(1, 2), meta=np.ndarray>
- long_name :
- time axis boundaries
- calendar :
- NOLEAP
Array Chunk Bytes 384 B 16 B Shape (24, 2) (1, 2) Count 25 Tasks 24 Chunks Type timedelta64[ns] numpy.ndarray - u(time, z_l, yh, xq)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_methods :
- z_l:mean yh:mean xq:point time: mean
- interp_method :
- none
- long_name :
- Zonal velocity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m s-1
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray - v(time, z_l, yq, xh)float64dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
- cell_methods :
- z_l:mean yq:point xh:mean time: mean
- interp_method :
- none
- long_name :
- Meridional velocity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m s-1
Array Chunk Bytes 1.61 GB 67.27 MB Shape (24, 34, 458, 540) (1, 34, 458, 540) Count 25 Tasks 24 Chunks Type float64 numpy.ndarray
- associated_files :
- area_t: g.c2b6.GNYF.T62_t061.melt_potential.003.mom6.static.nc
- filename :
- g.c2b6.GNYF.T62_t061.melt_potential.003.mom6.h_0001_01.nc
- grid_tile :
- N/A
- grid_type :
- regular
- title :
- MOM6 g.c2b6.GNYF.T62_t061.melt_potential.003 Experiment