cesm_mom6_example

CESM MOM6 Ocean Model Example Data

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml") ds = cat["cesm_mom6_example"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

uploader_github gustavo-marques
uploader_email gmarques@ucar.edu
url https://github.com/NCAR/MOM6-cases
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • lath: 458
    • latq: 458
    • lonh: 540
    • lonq: 540
    • nv: 2
    • scalar_axis: 1
    • time: 24
    • xh: 540
    • xq: 540
    • yh: 458
    • yq: 458
    • z_i: 35
    • z_l: 34
    • geolat
      (yh, xh)
      float64
      dask.array<chunksize=(458, 540), meta=np.ndarray>
      long_name :
      latitude at tracer (T) points
      units :
      degree
      Array Chunk
      Bytes 1.98 MB 1.98 MB
      Shape (458, 540) (458, 540)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      540 458
    • geolatb
      (yq, xq)
      float64
      dask.array<chunksize=(458, 540), meta=np.ndarray>
      long_name :
      latitude at corner (Bu) points
      units :
      degree
      Array Chunk
      Bytes 1.98 MB 1.98 MB
      Shape (458, 540) (458, 540)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      540 458
    • geolon
      (yh, xh)
      float64
      dask.array<chunksize=(458, 540), meta=np.ndarray>
      long_name :
      longitude at tracer (T) points
      units :
      degree
      Array Chunk
      Bytes 1.98 MB 1.98 MB
      Shape (458, 540) (458, 540)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      540 458
    • geolonb
      (yq, xq)
      float64
      dask.array<chunksize=(458, 540), meta=np.ndarray>
      long_name :
      longitude at corner (Bu) points
      units :
      degree
      Array Chunk
      Bytes 1.98 MB 1.98 MB
      Shape (458, 540) (458, 540)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      540 458
    • lath
      (lath)
      float64
      -79.2 -79.08 -78.95 ... 87.71 87.74
      cartesian_axis :
      Y
      long_name :
      Latitude
      units :
      degrees_north
      array([-79.202602, -79.076995, -78.949944, ...,  87.641507,  87.706191,
              87.738663])
    • latq
      (latq)
      float64
      -79.14 -79.01 ... 87.73 87.74
      cartesian_axis :
      Y
      long_name :
      Latitude
      units :
      degrees_north
      array([-79.139978, -79.013651, -78.885872, ...,  87.67781 ,  87.726499,
              87.7427  ])
    • lonh
      (lonh)
      float64
      -286.7 -286.0 -285.3 ... 72.0 72.67
      cartesian_axis :
      X
      long_name :
      Longitude
      units :
      degrees_east
      array([-286.666667, -286.      , -285.333333, ...,   71.333333,   72.      ,
               72.666667])
    • lonq
      (lonq)
      float64
      -286.3 -285.7 -285.0 ... 72.33 73.0
      cartesian_axis :
      X
      long_name :
      Longitude
      units :
      degrees_east
      array([-286.333333, -285.666667, -285.      , ...,   71.666667,   72.333333,
               73.      ])
    • nv
      (nv)
      float64
      1.0 2.0
      cartesian_axis :
      N
      long_name :
      vertex number
      units :
      none
      array([1., 2.])
    • scalar_axis
      (scalar_axis)
      float64
      0.0
      cartesian_axis :
      N
      long_name :
      none
      units :
      none
      array([0.])
    • time
      (time)
      object
      0001-01-16 12:00:00 ... 0002-12-16 12:00:00
      bounds :
      time_bnds
      calendar_type :
      NOLEAP
      cartesian_axis :
      T
      long_name :
      time
      array([cftime.DatetimeNoLeap(1, 1, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 2, 15, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 3, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 4, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 5, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 6, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 7, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 8, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 9, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 10, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 11, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(1, 12, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 1, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 2, 15, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 3, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 4, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 5, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 6, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 7, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 8, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 9, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 10, 16, 12, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 11, 16, 0, 0, 0, 0),
             cftime.DatetimeNoLeap(2, 12, 16, 12, 0, 0, 0)], dtype=object)
    • xh
      (xh)
      float64
      -286.7 -286.0 -285.3 ... 72.0 72.67
      cartesian_axis :
      X
      long_name :
      h point nominal longitude
      units :
      degrees_east
      array([-286.666667, -286.      , -285.333333, ...,   71.333333,   72.      ,
               72.666667])
    • xq
      (xq)
      float64
      -286.3 -285.7 -285.0 ... 72.33 73.0
      cartesian_axis :
      X
      long_name :
      q point nominal longitude
      units :
      degrees_east
      array([-286.333333, -285.666667, -285.      , ...,   71.666667,   72.333333,
               73.      ])
    • yh
      (yh)
      float64
      -79.2 -79.08 -78.95 ... 87.71 87.74
      cartesian_axis :
      Y
      long_name :
      h point nominal latitude
      units :
      degrees_north
      array([-79.202602, -79.076995, -78.949944, ...,  87.641507,  87.706191,
              87.738663])
    • yq
      (yq)
      float64
      -79.14 -79.01 ... 87.73 87.74
      cartesian_axis :
      Y
      long_name :
      q point nominal latitude
      units :
      degrees_north
      array([-79.139978, -79.013651, -78.885872, ...,  87.67781 ,  87.726499,
              87.7427  ])
    • z_i
      (z_i)
      float64
      0.0 5.0 15.0 ... 5.75e+03 6.25e+03
      cartesian_axis :
      Z
      long_name :
      Depth at interface
      positive :
      down
      units :
      meters
      array([0.000e+00, 5.000e+00, 1.500e+01, 2.500e+01, 4.000e+01, 6.250e+01,
             8.750e+01, 1.125e+02, 1.375e+02, 1.750e+02, 2.250e+02, 2.750e+02,
             3.500e+02, 4.500e+02, 5.500e+02, 6.500e+02, 7.500e+02, 8.500e+02,
             9.500e+02, 1.050e+03, 1.150e+03, 1.250e+03, 1.350e+03, 1.450e+03,
             1.625e+03, 1.875e+03, 2.250e+03, 2.750e+03, 3.250e+03, 3.750e+03,
             4.250e+03, 4.750e+03, 5.250e+03, 5.750e+03, 6.250e+03])
    • z_l
      (z_l)
      float64
      2.5 10.0 20.0 ... 5.5e+03 6e+03
      cartesian_axis :
      Z
      edges :
      z_i
      long_name :
      Depth at cell center
      positive :
      down
      units :
      meters
      array([2.5000e+00, 1.0000e+01, 2.0000e+01, 3.2500e+01, 5.1250e+01, 7.5000e+01,
             1.0000e+02, 1.2500e+02, 1.5625e+02, 2.0000e+02, 2.5000e+02, 3.1250e+02,
             4.0000e+02, 5.0000e+02, 6.0000e+02, 7.0000e+02, 8.0000e+02, 9.0000e+02,
             1.0000e+03, 1.1000e+03, 1.2000e+03, 1.3000e+03, 1.4000e+03, 1.5375e+03,
             1.7500e+03, 2.0625e+03, 2.5000e+03, 3.0000e+03, 3.5000e+03, 4.0000e+03,
             4.5000e+03, 5.0000e+03, 5.5000e+03, 6.0000e+03])
    • KE
      (time, z_l, yh, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean z_l:mean yh:mean xh:mean time: mean
      long_name :
      Layer kinetic energy per unit mass
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m2 s-2
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • KPP_OBLdepth
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Thickness of the surface Ocean Boundary Layer calculated by [CVMix] KPP
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      meter
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • MLD_0125
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Mixed layer depth (delta rho = 0.125)
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • SSH
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Sea Surface Height
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • SSS
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Sea Surface Salinity
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      psu
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • SST
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Sea Surface Temperature
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      degC
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • average_DT
      (time)
      timedelta64[ns]
      dask.array<chunksize=(1,), meta=np.ndarray>
      long_name :
      Length of average period
      Array Chunk
      Bytes 192 B 8 B
      Shape (24,) (1,)
      Count 25 Tasks 24 Chunks
      Type timedelta64[ns] numpy.ndarray
      24 1
    • average_T1
      (time)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      long_name :
      Start time for average period
      Array Chunk
      Bytes 192 B 8 B
      Shape (24,) (1,)
      Count 25 Tasks 24 Chunks
      Type object numpy.ndarray
      24 1
    • average_T2
      (time)
      object
      dask.array<chunksize=(1,), meta=np.ndarray>
      long_name :
      End time for average period
      Array Chunk
      Bytes 192 B 8 B
      Shape (24,) (1,)
      Count 25 Tasks 24 Chunks
      Type object numpy.ndarray
      24 1
    • friver
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Water Flux into Sea Water From Rivers
      standard_name :
      water_flux_into_sea_water_from_rivers
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      kg m-2 s-1
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • h
      (time, z_l, yh, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean z_l:sum yh:mean xh:mean time: mean
      long_name :
      Layer Thickness
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • hfds
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Surface ocean heat flux from SW+LW+latent+sensible+masstransfer+frazil
      standard_name :
      surface_downward_heat_flux_in_sea_water
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      W m-2
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • hfsnthermds
      (time, yh, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean yh:mean xh:mean time: mean
      long_name :
      Latent Heat to Melt Frozen Precipitation
      standard_name :
      heat_flux_into_sea_water_due_to_snow_thermodynamics
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      W m-2
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • rhoinsitu
      (time, z_l, yh, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean z_l:mean yh:mean xh:mean time: mean
      long_name :
      In situ density
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      kg m-3
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • salt
      (time, z_l, yh, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean z_l:mean yh:mean xh:mean time: mean
      long_name :
      Salinity
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      psu
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • soga
      (time, scalar_axis)
      float64
      dask.array<chunksize=(1, 1), meta=np.ndarray>
      cell_methods :
      time: mean
      long_name :
      Global Mean Ocean Salinity
      standard_name :
      sea_water_salinity
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      psu
      Array Chunk
      Bytes 192 B 8 B
      Shape (24, 1) (1, 1)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      1 24
    • taux
      (time, yh, xq)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_methods :
      yh:mean xq:point time: mean
      interp_method :
      none
      long_name :
      Zonal surface stress from ocean interactions with atmos and ice
      standard_name :
      surface_downward_x_stress
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      Pa
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • tauy
      (time, yq, xh)
      float64
      dask.array<chunksize=(1, 458, 540), meta=np.ndarray>
      cell_methods :
      yq:point xh:mean time: mean
      interp_method :
      none
      long_name :
      Meridional surface stress ocean interactions with atmos and ice
      standard_name :
      surface_downward_y_stress
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      Pa
      Array Chunk
      Bytes 47.49 MB 1.98 MB
      Shape (24, 458, 540) (1, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      540 458 24
    • temp
      (time, z_l, yh, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_measures :
      area: area_t
      cell_methods :
      area:mean z_l:mean yh:mean xh:mean time: mean
      long_name :
      Potential Temperature
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      degC
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • thetaoga
      (time, scalar_axis)
      float64
      dask.array<chunksize=(1, 1), meta=np.ndarray>
      cell_methods :
      time: mean
      long_name :
      Global Mean Ocean Potential Temperature
      standard_name :
      sea_water_potential_temperature
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      degC
      Array Chunk
      Bytes 192 B 8 B
      Shape (24, 1) (1, 1)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      1 24
    • time_bnds
      (time, nv)
      timedelta64[ns]
      dask.array<chunksize=(1, 2), meta=np.ndarray>
      long_name :
      time axis boundaries
      calendar :
      NOLEAP
      Array Chunk
      Bytes 384 B 16 B
      Shape (24, 2) (1, 2)
      Count 25 Tasks 24 Chunks
      Type timedelta64[ns] numpy.ndarray
      2 24
    • u
      (time, z_l, yh, xq)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_methods :
      z_l:mean yh:mean xq:point time: mean
      interp_method :
      none
      long_name :
      Zonal velocity
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m s-1
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
    • v
      (time, z_l, yq, xh)
      float64
      dask.array<chunksize=(1, 34, 458, 540), meta=np.ndarray>
      cell_methods :
      z_l:mean yq:point xh:mean time: mean
      interp_method :
      none
      long_name :
      Meridional velocity
      time_avg_info :
      average_T1,average_T2,average_DT
      units :
      m s-1
      Array Chunk
      Bytes 1.61 GB 67.27 MB
      Shape (24, 34, 458, 540) (1, 34, 458, 540)
      Count 25 Tasks 24 Chunks
      Type float64 numpy.ndarray
      24 1 540 458 34
  • associated_files :
    area_t: g.c2b6.GNYF.T62_t061.melt_potential.003.mom6.static.nc
    filename :
    g.c2b6.GNYF.T62_t061.melt_potential.003.mom6.h_0001_01.nc
    grid_tile :
    N/A
    grid_type :
    regular
    title :
    MOM6 g.c2b6.GNYF.T62_t061.melt_potential.003 Experiment