j2g
OSTSM/Jason-2 Geodetic Phase Global Ocean Along track CMEMS Sea Surface Height L3 product
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/altimetry.yaml")
ds = cat["j2g"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
tags | ['altimetry', 'ocean', 'observations'] |
url | http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L3_REP_OBSERVATIONS_008_062 |
Dataset Contents
xarray.Dataset
- time: 3384775
- latitude(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- long_name :
- Latitude of measurement
- standard_name :
- latitude
- units :
- degrees_north
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - longitude(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- long_name :
- Longitude of measurement
- standard_name :
- longitude
- units :
- degrees_east
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - time(time)datetime64[ns]2017-07-11T11:11:25.429912064 ... 2017-09-14T06:06:59.062456064
- axis :
- T
- long_name :
- Time of measurement
- standard_name :
- time
array(['2017-07-11T11:11:25.429912064', '2017-07-11T11:11:26.427781888', '2017-07-11T11:11:27.425651968', ..., '2017-09-14T06:06:57.066715904', '2017-09-14T06:06:58.064585984', '2017-09-14T06:06:59.062456064'], dtype='datetime64[ns]')
- cycle(time)int16dask.array<chunksize=(3384775,), meta=np.ndarray>
- long_name :
- Cycle the measurement belongs to
- units :
- 1
Array Chunk Bytes 6.77 MB 6.77 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type int16 numpy.ndarray - dac(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The sla in this file is already corrected for the dac; the uncorrected sla can be computed as follows: [uncorrected sla]=[sla from product]+[dac]; see the product user manual for details
- long_name :
- Dynamic Atmospheric Correction
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - lwe(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The sla in this file is already corrected for the lwe; the uncorrected sla can be computed as follows: [uncorrected sla]=[sla from product]-[lwe]; see the product user manual for details
- long_name :
- Long wavelength error
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - mdt(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The mean dynamic topography is the sea surface height above geoid; it is used to compute the absolute dynamic tyopography adt=sla+mdt
- long_name :
- Mean dynamic topography
- standard_name :
- sea_surface_height_above_geoid
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - ocean_tide(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The sla in this file is already corrected for the ocean_tide; the uncorrected sla can be computed as follows: [uncorrected sla]=[sla from product]+[ocean_tide]; see the product user manual for details
- long_name :
- Ocean tide model
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - sla_filtered(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The sea level anomaly is the sea surface height above mean sea surface height; the uncorrected sla can be computed as follows: [uncorrected sla]=[sla from product]+[dac]+[ocean_tide]-[lwe]; see the product user manual for details
- long_name :
- Sea level anomaly filtered not-subsampled with dac, ocean_tide and lwe correction applied
- standard_name :
- sea_surface_height_above_sea_level
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - sla_unfiltered(time)float64dask.array<chunksize=(3384775,), meta=np.ndarray>
- comment :
- The sea level anomaly is the sea surface height above mean sea surface height; the uncorrected sla can be computed as follows: [uncorrected sla]=[sla from product]+[dac]+[ocean_tide]-[lwe]; see the product user manual for details
- long_name :
- Sea level anomaly not-filtered not-subsampled with dac, ocean_tide and lwe correction applied
- standard_name :
- sea_surface_height_above_sea_level
- units :
- m
Array Chunk Bytes 27.08 MB 27.08 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - track(time)int16dask.array<chunksize=(3384775,), meta=np.ndarray>
- long_name :
- Track in cycle the measurement belongs to
- units :
- 1
Array Chunk Bytes 6.77 MB 6.77 MB Shape (3384775,) (3384775,) Count 2 Tasks 1 Chunks Type int16 numpy.ndarray
- Conventions :
- CF-1.6
- Metadata_Conventions :
- Unidata Dataset Discovery v1.0
- cdm_data_type :
- Swath
- comment :
- Sea surface height measured by altimeters referenced to the [1993, 2012] period; with additional corrections; the proposed sla is already corrected for dac, ocean_tide and lwe; [uncorrected sla]=[sla from product]+[dac]+[ocean_tide]-[lwe]
- contact :
- servicedesk.cmems@mercator-ocean.eu
- creator_email :
- servicedesk.cmems@mercator-ocean.eu
- creator_name :
- CMEMS - Sea Level Thematic Assembly Center
- creator_url :
- http://marine.copernicus.eu
- history :
- 2019-03-28T02:27:35Z: Creation
- institution :
- CLS, CNES
- keywords :
- Oceans > Ocean Topography > Sea Surface Height
- keywords_vocabulary :
- NetCDF COARDS Climate and Forecast Standard Names
- license :
- http://marine.copernicus.eu/web/27-service-commitments-and-licence.php
- platform :
- OSTM/Jason-2 Long Repeat Orbit
- processing_level :
- L3
- product_version :
- 2019
- project :
- COPERNICUS MARINE ENVIRONMENT MONITORING SERVICE (CMEMS)
- references :
- http://marine.copernicus.eu
- software_version :
- 6.2_DUACS_DT2018_baseline
- source :
- OSTM/Jason-2 Long Repeat Orbit measurements
- ssalto_duacs_comment :
- The reference mission used for the altimeter inter-calibration processing is Topex/Poseidon between 1993-01-01 and 2002-04-23, Jason-1 between 2002-04-24 and 2008-10-18, OSTM/Jason-2 between 2008-10-19 and 2016-06-25, Jason-3 since 2016-06-25.
- standard_name_vocabulary :
- NetCDF Climate and Forecast (CF) Metadata Convention Standard Name Table v37
- summary :
- SSALTO/DUACS Delayed-Time Level-3 sea surface height measured by OSTM/Jason-2 Long Repeat Orbit altimetry observations over Global Ocean.
- title :
- DT OSTM/Jason-2 Long Repeat Orbit Global Ocean Along track SSALTO/DUACS Sea Surface Height L3 product