SOSE
Southern Ocean State Estimate
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
ds = cat["SOSE"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | http://sose.ucsd.edu/ |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- XC: 2160
- XG: 2160
- YC: 320
- YG: 320
- Z: 42
- Zl: 42
- Zp1: 43
- Zu: 42
- time: 438
- Depth(YC, XC)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- XC YC
- long_name :
- ocean depth
- standard_name :
- ocean_depth
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - PHrefC(Z)float32dask.array<chunksize=(42,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 168 B 168 B Shape (42,) (42,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - PHrefF(Zp1)float32dask.array<chunksize=(43,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 172 B 172 B Shape (43,) (43,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - XC(XC)float320.083333336 0.25 ... 359.9167
- axis :
- X
- coordinate :
- YC XC
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([8.333334e-02, 2.500000e-01, 4.166667e-01, ..., 3.595833e+02, 3.597500e+02, 3.599167e+02], dtype=float32)
- XG(XG)float325.551115e-17 ... 359.83334
- axis :
- X
- c_grid_axis_shift :
- -0.5
- coordinate :
- YG XG
- long_name :
- longitude
- standard_name :
- longitude_at_f_location
- units :
- degrees_east
array([5.551115e-17, 1.666667e-01, 3.333333e-01, ..., 3.595000e+02, 3.596667e+02, 3.598333e+02], dtype=float32)
- YC(YC)float32-77.87497 -77.7083 ... -24.7083
- axis :
- Y
- coordinate :
- YC XC
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
array([-77.87497 , -77.7083 , -77.54163 , ..., -25.041632, -24.874966, -24.7083 ], dtype=float32)
- YG(YG)float32-77.9583 -77.79163 ... -24.791632
- axis :
- Y
- c_grid_axis_shift :
- -0.5
- long_name :
- latitude
- standard_name :
- latitude_at_f_location
- units :
- degrees_north
array([-77.9583 , -77.79163 , -77.62497 , ..., -25.124966, -24.9583 , -24.791632], dtype=float32)
- Z(Z)float32-5.0 -15.5 ... -5325.0 -5575.0
- axis :
- Z
- long_name :
- vertical coordinate of cell center
- positive :
- down
- standard_name :
- depth
- units :
- m
array([-5.0000e+00, -1.5500e+01, -2.7000e+01, -3.9500e+01, -5.3000e+01, -6.8000e+01, -8.5000e+01, -1.0400e+02, -1.2550e+02, -1.5000e+02, -1.7750e+02, -2.0850e+02, -2.4350e+02, -2.8300e+02, -3.2800e+02, -3.7950e+02, -4.3850e+02, -5.0600e+02, -5.8300e+02, -6.7100e+02, -7.7200e+02, -8.8800e+02, -1.0210e+03, -1.1735e+03, -1.3485e+03, -1.5495e+03, -1.7805e+03, -2.0460e+03, -2.3190e+03, -2.5750e+03, -2.8250e+03, -3.0750e+03, -3.3250e+03, -3.5750e+03, -3.8250e+03, -4.0750e+03, -4.3250e+03, -4.5750e+03, -4.8250e+03, -5.0750e+03, -5.3250e+03, -5.5750e+03], dtype=float32)
- Zl(Zl)float320.0 -10.0 -21.0 ... -5200.0 -5450.0
- axis :
- Z
- c_grid_axis_shift :
- -0.5
- long_name :
- vertical coordinate of upper cell interface
- positive :
- down
- standard_name :
- depth_at_upper_w_location
- units :
- m
array([ 0., -10., -21., -33., -46., -60., -76., -94., -114., -137., -163., -192., -225., -262., -304., -352., -407., -470., -542., -624., -718., -826., -950., -1092., -1255., -1442., -1657., -1904., -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950., -4200., -4450., -4700., -4950., -5200., -5450.], dtype=float32)
- Zp1(Zp1)float320.0 -10.0 -21.0 ... -5450.0 -5700.0
- axis :
- Z
- c_grid_axis_shift :
- [-0.5, 0.5]
- long_name :
- vertical coordinate of cell interface
- positive :
- down
- standard_name :
- depth_at_w_location
- units :
- m
array([ 0., -10., -21., -33., -46., -60., -76., -94., -114., -137., -163., -192., -225., -262., -304., -352., -407., -470., -542., -624., -718., -826., -950., -1092., -1255., -1442., -1657., -1904., -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950., -4200., -4450., -4700., -4950., -5200., -5450., -5700.], dtype=float32)
- Zu(Zu)float32-10.0 -21.0 ... -5450.0 -5700.0
- axis :
- Z
- c_grid_axis_shift :
- 0.5
- long_name :
- vertical coordinate of lower cell interface
- positive :
- down
- standard_name :
- depth_at_lower_w_location
- units :
- m
array([ -10., -21., -33., -46., -60., -76., -94., -114., -137., -163., -192., -225., -262., -304., -352., -407., -470., -542., -624., -718., -826., -950., -1092., -1255., -1442., -1657., -1904., -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950., -4200., -4450., -4700., -4950., -5200., -5450., -5700.], dtype=float32)
- drC(Zp1)float32dask.array<chunksize=(43,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size_at_w_location
- units :
- m
Array Chunk Bytes 172 B 172 B Shape (43,) (43,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - drF(Z)float32dask.array<chunksize=(42,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size
- units :
- m
Array Chunk Bytes 168 B 168 B Shape (42,) (42,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dxC(YC, XG)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_u_location
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dxG(YG, XC)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_v_location
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyC(YG, XC)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_v_location
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - dyG(YC, XG)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_u_location
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacC(Z, YC, XC)float32dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction
Array Chunk Bytes 116.12 MB 116.12 MB Shape (42, 320, 2160) (42, 320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacS(Z, YG, XC)float32dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_v_location
Array Chunk Bytes 116.12 MB 116.12 MB Shape (42, 320, 2160) (42, 320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - hFacW(Z, YC, XG)float32dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_u_location
Array Chunk Bytes 116.12 MB 116.12 MB Shape (42, 320, 2160) (42, 320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - iter(time)int64dask.array<chunksize=(438,), meta=np.ndarray>
- long_name :
- model timestep number
- standard_name :
- timestep
Array Chunk Bytes 3.50 kB 3.50 kB Shape (438,) (438,) Count 2 Tasks 1 Chunks Type int64 numpy.ndarray - rA(YC, XC)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- cell area
- standard_name :
- cell_area
- units :
- m2
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAs(YG, XC)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- long_name :
- cell area
- standard_name :
- cell_area_at_v_location
- units :
- m2
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAw(YC, XG)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell area
- standard_name :
- cell_area_at_u_location
- units :
- m2
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - rAz(YG, XG)float32dask.array<chunksize=(320, 2160), meta=np.ndarray>
- coordinate :
- YG XG
- long_name :
- cell area
- standard_name :
- cell_area_at_f_location
- units :
- m
Array Chunk Bytes 2.76 MB 2.76 MB Shape (320, 2160) (320, 2160) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - time(time)datetime64[ns]2005-01-06 ... 2010-12-31
- axis :
- T
- long_name :
- Time
- standard_name :
- time
array(['2005-01-06T00:00:00.000000000', '2005-01-11T00:00:00.000000000', '2005-01-16T00:00:00.000000000', ..., '2010-12-21T00:00:00.000000000', '2010-12-26T00:00:00.000000000', '2010-12-31T00:00:00.000000000'], dtype='datetime64[ns]')
- ADVr_SLT(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Advective Flux of Salinity
- standard_name :
- ADVr_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ADVr_TH(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Advective Flux of Pot.Temperature
- standard_name :
- ADVr_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ADVx_SLT(time, Z, YC, XG)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Zonal Advective Flux of Salinity
- mate :
- ADVy_SLT
- standard_name :
- ADVx_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ADVx_TH(time, Z, YC, XG)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Zonal Advective Flux of Pot.Temperature
- mate :
- ADVy_TH
- standard_name :
- ADVx_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ADVy_SLT(time, Z, YG, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Meridional Advective Flux of Salinity
- mate :
- ADVx_SLT
- standard_name :
- ADVy_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ADVy_TH(time, Z, YG, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Meridional Advective Flux of Pot.Temperature
- mate :
- ADVx_TH
- standard_name :
- ADVy_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFrE_SLT(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Diffusive Flux of Salinity (Explicit part)
- standard_name :
- DFrE_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFrE_TH(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Diffusive Flux of Pot.Temperature (Explicit part)
- standard_name :
- DFrE_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFrI_SLT(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Diffusive Flux of Salinity (Implicit part)
- standard_name :
- DFrI_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFrI_TH(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Vertical Diffusive Flux of Pot.Temperature (Implicit part)
- standard_name :
- DFrI_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFxE_SLT(time, Z, YC, XG)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Zonal Diffusive Flux of Salinity
- mate :
- DFyE_SLT
- standard_name :
- DFxE_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFxE_TH(time, Z, YC, XG)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Zonal Diffusive Flux of Pot.Temperature
- mate :
- DFyE_TH
- standard_name :
- DFxE_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFyE_SLT(time, Z, YG, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Meridional Diffusive Flux of Salinity
- mate :
- DFxE_SLT
- standard_name :
- DFyE_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DFyE_TH(time, Z, YG, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Meridional Diffusive Flux of Pot.Temperature
- mate :
- DFxE_TH
- standard_name :
- DFyE_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - DRHODR(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Stratification: d.Sigma/dr (kg/m3/r_unit)
- standard_name :
- DRHODR
- units :
- kg/m^4
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - ETAN(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- Surface Height Anomaly
- standard_name :
- ETAN
- units :
- m
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - EXFswnet(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- Net upward shortwave radiation, >0 decreases theta
- standard_name :
- EXFswnet
- units :
- W/m^2
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - KPPg_SLT(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- KPP non-local Flux of Salinity
- standard_name :
- KPPg_SLT
- units :
- psu.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - KPPg_TH(time, Zl, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- KPP non-local Flux of Pot.Temperature
- standard_name :
- KPPg_TH
- units :
- degC.m^3/s
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - PHIHYD(time, Z, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Hydrostatic Pressure Pot.(p/rho) Anomaly
- standard_name :
- PHIHYD
- units :
- m^2/s^2
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SALT(time, Z, YC, XC)float32dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
- long_name :
- Salinity
- standard_name :
- SALT
- units :
- psu
Array Chunk Bytes 50.86 GB 116.12 MB Shape (438, 42, 320, 2160) (1, 42, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SFLUX(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- total salt flux (match salt-content variations), >0 increases salt
- standard_name :
- SFLUX
- units :
- g/m^2/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIarea(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- SEAICE fractional ice-covered area [0 to 1]
- standard_name :
- SIarea
- units :
- m^2/m^2
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIatmFW(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- Net freshwater flux from atmosphere & land (+=down)
- standard_name :
- SIatmFW
- units :
- kg/m^2/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIatmQnt(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- Net atmospheric heat flux, >0 decreases theta
- standard_name :
- SIatmQnt
- units :
- W/m^2
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIdHbATC(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- HEFF rate of change by atm flux over sea ice
- standard_name :
- SIdHbATC
- units :
- m/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIdHbATO(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- HEFF rate of change by open ocn atm flux
- standard_name :
- SIdHbATO
- units :
- m/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIdHbOCN(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- HEFF rate of change by ocean ice flux
- standard_name :
- SIdHbOCN
- units :
- m/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIdSbATC(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- HSNOW rate of change by atm flux over sea ice
- standard_name :
- SIdSbATC
- units :
- m/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIdSbOCN(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- HSNOW rate of change by ocean ice flux
- standard_name :
- SIdSbOCN
- units :
- m/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIempmr(time, YC, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- Ocean surface freshwater flux, > 0 increases salt
- standard_name :
- SIempmr
- units :
- kg/m^2/s
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIfu(time, YC, XG)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- SEAICE zonal surface wind stress, >0 increases uVel
- mate :
- SIfv
- standard_name :
- SIfu
- units :
- N/m^2
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray - SIfv(time, YG, XC)float32dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
- long_name :
- SEAICE merid. surface wind stress, >0 increases vVel
- mate :
- SIfu
- standard_name :
- SIfv
- units :
- N/m^2
Array Chunk Bytes 1.21 GB 2.76 MB Shape (438, 320, 2160) (1, 320, 2160) Count 439 Tasks 438 Chunks Type float32 numpy.ndarray