SOSE

Southern Ocean State Estimate

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml") ds = cat["SOSE"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

url http://sose.ucsd.edu/
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • XC: 2160
    • XG: 2160
    • YC: 320
    • YG: 320
    • Z: 42
    • Zl: 42
    • Zp1: 43
    • Zu: 42
    • time: 438
    • Depth
      (YC, XC)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      XC YC
      long_name :
      ocean depth
      standard_name :
      ocean_depth
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • PHrefC
      (Z)
      float32
      dask.array<chunksize=(42,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 168 B 168 B
      Shape (42,) (42,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      42 1
    • PHrefF
      (Zp1)
      float32
      dask.array<chunksize=(43,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 172 B 172 B
      Shape (43,) (43,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      43 1
    • XC
      (XC)
      float32
      0.083333336 0.25 ... 359.9167
      axis :
      X
      coordinate :
      YC XC
      long_name :
      longitude
      standard_name :
      longitude
      units :
      degrees_east
      array([8.333334e-02, 2.500000e-01, 4.166667e-01, ..., 3.595833e+02,
             3.597500e+02, 3.599167e+02], dtype=float32)
    • XG
      (XG)
      float32
      5.551115e-17 ... 359.83334
      axis :
      X
      c_grid_axis_shift :
      -0.5
      coordinate :
      YG XG
      long_name :
      longitude
      standard_name :
      longitude_at_f_location
      units :
      degrees_east
      array([5.551115e-17, 1.666667e-01, 3.333333e-01, ..., 3.595000e+02,
             3.596667e+02, 3.598333e+02], dtype=float32)
    • YC
      (YC)
      float32
      -77.87497 -77.7083 ... -24.7083
      axis :
      Y
      coordinate :
      YC XC
      long_name :
      latitude
      standard_name :
      latitude
      units :
      degrees_north
      array([-77.87497 , -77.7083  , -77.54163 , ..., -25.041632, -24.874966,
             -24.7083  ], dtype=float32)
    • YG
      (YG)
      float32
      -77.9583 -77.79163 ... -24.791632
      axis :
      Y
      c_grid_axis_shift :
      -0.5
      long_name :
      latitude
      standard_name :
      latitude_at_f_location
      units :
      degrees_north
      array([-77.9583  , -77.79163 , -77.62497 , ..., -25.124966, -24.9583  ,
             -24.791632], dtype=float32)
    • Z
      (Z)
      float32
      -5.0 -15.5 ... -5325.0 -5575.0
      axis :
      Z
      long_name :
      vertical coordinate of cell center
      positive :
      down
      standard_name :
      depth
      units :
      m
      array([-5.0000e+00, -1.5500e+01, -2.7000e+01, -3.9500e+01, -5.3000e+01,
             -6.8000e+01, -8.5000e+01, -1.0400e+02, -1.2550e+02, -1.5000e+02,
             -1.7750e+02, -2.0850e+02, -2.4350e+02, -2.8300e+02, -3.2800e+02,
             -3.7950e+02, -4.3850e+02, -5.0600e+02, -5.8300e+02, -6.7100e+02,
             -7.7200e+02, -8.8800e+02, -1.0210e+03, -1.1735e+03, -1.3485e+03,
             -1.5495e+03, -1.7805e+03, -2.0460e+03, -2.3190e+03, -2.5750e+03,
             -2.8250e+03, -3.0750e+03, -3.3250e+03, -3.5750e+03, -3.8250e+03,
             -4.0750e+03, -4.3250e+03, -4.5750e+03, -4.8250e+03, -5.0750e+03,
             -5.3250e+03, -5.5750e+03], dtype=float32)
    • Zl
      (Zl)
      float32
      0.0 -10.0 -21.0 ... -5200.0 -5450.0
      axis :
      Z
      c_grid_axis_shift :
      -0.5
      long_name :
      vertical coordinate of upper cell interface
      positive :
      down
      standard_name :
      depth_at_upper_w_location
      units :
      m
      array([    0.,   -10.,   -21.,   -33.,   -46.,   -60.,   -76.,   -94.,  -114.,
              -137.,  -163.,  -192.,  -225.,  -262.,  -304.,  -352.,  -407.,  -470.,
              -542.,  -624.,  -718.,  -826.,  -950., -1092., -1255., -1442., -1657.,
             -1904., -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950.,
             -4200., -4450., -4700., -4950., -5200., -5450.], dtype=float32)
    • Zp1
      (Zp1)
      float32
      0.0 -10.0 -21.0 ... -5450.0 -5700.0
      axis :
      Z
      c_grid_axis_shift :
      [-0.5, 0.5]
      long_name :
      vertical coordinate of cell interface
      positive :
      down
      standard_name :
      depth_at_w_location
      units :
      m
      array([    0.,   -10.,   -21.,   -33.,   -46.,   -60.,   -76.,   -94.,  -114.,
              -137.,  -163.,  -192.,  -225.,  -262.,  -304.,  -352.,  -407.,  -470.,
              -542.,  -624.,  -718.,  -826.,  -950., -1092., -1255., -1442., -1657.,
             -1904., -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950.,
             -4200., -4450., -4700., -4950., -5200., -5450., -5700.], dtype=float32)
    • Zu
      (Zu)
      float32
      -10.0 -21.0 ... -5450.0 -5700.0
      axis :
      Z
      c_grid_axis_shift :
      0.5
      long_name :
      vertical coordinate of lower cell interface
      positive :
      down
      standard_name :
      depth_at_lower_w_location
      units :
      m
      array([  -10.,   -21.,   -33.,   -46.,   -60.,   -76.,   -94.,  -114.,  -137.,
              -163.,  -192.,  -225.,  -262.,  -304.,  -352.,  -407.,  -470.,  -542.,
              -624.,  -718.,  -826.,  -950., -1092., -1255., -1442., -1657., -1904.,
             -2188., -2450., -2700., -2950., -3200., -3450., -3700., -3950., -4200.,
             -4450., -4700., -4950., -5200., -5450., -5700.], dtype=float32)
    • drC
      (Zp1)
      float32
      dask.array<chunksize=(43,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size_at_w_location
      units :
      m
      Array Chunk
      Bytes 172 B 172 B
      Shape (43,) (43,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      43 1
    • drF
      (Z)
      float32
      dask.array<chunksize=(42,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size
      units :
      m
      Array Chunk
      Bytes 168 B 168 B
      Shape (42,) (42,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      42 1
    • dxC
      (YC, XG)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • dxG
      (YG, XC)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • dyC
      (YG, XC)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • dyG
      (YC, XG)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • hFacC
      (Z, YC, XC)
      float32
      dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction
      Array Chunk
      Bytes 116.12 MB 116.12 MB
      Shape (42, 320, 2160) (42, 320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320 42
    • hFacS
      (Z, YG, XC)
      float32
      dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 116.12 MB 116.12 MB
      Shape (42, 320, 2160) (42, 320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320 42
    • hFacW
      (Z, YC, XG)
      float32
      dask.array<chunksize=(42, 320, 2160), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 116.12 MB 116.12 MB
      Shape (42, 320, 2160) (42, 320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320 42
    • iter
      (time)
      int64
      dask.array<chunksize=(438,), meta=np.ndarray>
      long_name :
      model timestep number
      standard_name :
      timestep
      Array Chunk
      Bytes 3.50 kB 3.50 kB
      Shape (438,) (438,)
      Count 2 Tasks 1 Chunks
      Type int64 numpy.ndarray
      438 1
    • rA
      (YC, XC)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      cell area
      standard_name :
      cell_area
      units :
      m2
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • rAs
      (YG, XC)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      long_name :
      cell area
      standard_name :
      cell_area_at_v_location
      units :
      m2
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • rAw
      (YC, XG)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell area
      standard_name :
      cell_area_at_u_location
      units :
      m2
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • rAz
      (YG, XG)
      float32
      dask.array<chunksize=(320, 2160), meta=np.ndarray>
      coordinate :
      YG XG
      long_name :
      cell area
      standard_name :
      cell_area_at_f_location
      units :
      m
      Array Chunk
      Bytes 2.76 MB 2.76 MB
      Shape (320, 2160) (320, 2160)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2160 320
    • time
      (time)
      datetime64[ns]
      2005-01-06 ... 2010-12-31
      axis :
      T
      long_name :
      Time
      standard_name :
      time
      array(['2005-01-06T00:00:00.000000000', '2005-01-11T00:00:00.000000000',
             '2005-01-16T00:00:00.000000000', ..., '2010-12-21T00:00:00.000000000',
             '2010-12-26T00:00:00.000000000', '2010-12-31T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • ADVr_SLT
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Advective Flux of Salinity
      standard_name :
      ADVr_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ADVr_TH
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Advective Flux of Pot.Temperature
      standard_name :
      ADVr_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ADVx_SLT
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Zonal Advective Flux of Salinity
      mate :
      ADVy_SLT
      standard_name :
      ADVx_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ADVx_TH
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Zonal Advective Flux of Pot.Temperature
      mate :
      ADVy_TH
      standard_name :
      ADVx_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ADVy_SLT
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Meridional Advective Flux of Salinity
      mate :
      ADVx_SLT
      standard_name :
      ADVy_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ADVy_TH
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Meridional Advective Flux of Pot.Temperature
      mate :
      ADVx_TH
      standard_name :
      ADVy_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFrE_SLT
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Diffusive Flux of Salinity (Explicit part)
      standard_name :
      DFrE_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFrE_TH
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Diffusive Flux of Pot.Temperature (Explicit part)
      standard_name :
      DFrE_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFrI_SLT
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Diffusive Flux of Salinity (Implicit part)
      standard_name :
      DFrI_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFrI_TH
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Vertical Diffusive Flux of Pot.Temperature (Implicit part)
      standard_name :
      DFrI_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFxE_SLT
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Zonal Diffusive Flux of Salinity
      mate :
      DFyE_SLT
      standard_name :
      DFxE_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFxE_TH
      (time, Z, YC, XG)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Zonal Diffusive Flux of Pot.Temperature
      mate :
      DFyE_TH
      standard_name :
      DFxE_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFyE_SLT
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Meridional Diffusive Flux of Salinity
      mate :
      DFxE_SLT
      standard_name :
      DFyE_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DFyE_TH
      (time, Z, YG, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Meridional Diffusive Flux of Pot.Temperature
      mate :
      DFxE_TH
      standard_name :
      DFyE_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • DRHODR
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Stratification: d.Sigma/dr (kg/m3/r_unit)
      standard_name :
      DRHODR
      units :
      kg/m^4
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • ETAN
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      Surface Height Anomaly
      standard_name :
      ETAN
      units :
      m
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • EXFswnet
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      Net upward shortwave radiation, >0 decreases theta
      standard_name :
      EXFswnet
      units :
      W/m^2
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • KPPg_SLT
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      KPP non-local Flux of Salinity
      standard_name :
      KPPg_SLT
      units :
      psu.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • KPPg_TH
      (time, Zl, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      KPP non-local Flux of Pot.Temperature
      standard_name :
      KPPg_TH
      units :
      degC.m^3/s
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • PHIHYD
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Hydrostatic Pressure Pot.(p/rho) Anomaly
      standard_name :
      PHIHYD
      units :
      m^2/s^2
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • SALT
      (time, Z, YC, XC)
      float32
      dask.array<chunksize=(1, 42, 320, 2160), meta=np.ndarray>
      long_name :
      Salinity
      standard_name :
      SALT
      units :
      psu
      Array Chunk
      Bytes 50.86 GB 116.12 MB
      Shape (438, 42, 320, 2160) (1, 42, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      438 1 2160 320 42
    • SFLUX
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      total salt flux (match salt-content variations), >0 increases salt
      standard_name :
      SFLUX
      units :
      g/m^2/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIarea
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      SEAICE fractional ice-covered area [0 to 1]
      standard_name :
      SIarea
      units :
      m^2/m^2
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIatmFW
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      Net freshwater flux from atmosphere & land (+=down)
      standard_name :
      SIatmFW
      units :
      kg/m^2/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIatmQnt
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      Net atmospheric heat flux, >0 decreases theta
      standard_name :
      SIatmQnt
      units :
      W/m^2
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIdHbATC
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      HEFF rate of change by atm flux over sea ice
      standard_name :
      SIdHbATC
      units :
      m/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIdHbATO
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      HEFF rate of change by open ocn atm flux
      standard_name :
      SIdHbATO
      units :
      m/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIdHbOCN
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      HEFF rate of change by ocean ice flux
      standard_name :
      SIdHbOCN
      units :
      m/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIdSbATC
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      HSNOW rate of change by atm flux over sea ice
      standard_name :
      SIdSbATC
      units :
      m/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIdSbOCN
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      HSNOW rate of change by ocean ice flux
      standard_name :
      SIdSbOCN
      units :
      m/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIempmr
      (time, YC, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      Ocean surface freshwater flux, > 0 increases salt
      standard_name :
      SIempmr
      units :
      kg/m^2/s
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIfu
      (time, YC, XG)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      SEAICE zonal surface wind stress, >0 increases uVel
      mate :
      SIfv
      standard_name :
      SIfu
      units :
      N/m^2
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray
      2160 320 438
    • SIfv
      (time, YG, XC)
      float32
      dask.array<chunksize=(1, 320, 2160), meta=np.ndarray>
      long_name :
      SEAICE merid. surface wind stress, >0 increases vVel
      mate :
      SIfu
      standard_name :
      SIfv
      units :
      N/m^2
      Array Chunk
      Bytes 1.21 GB 2.76 MB
      Shape (438, 320, 2160) (1, 320, 2160)
      Count 439 Tasks 438 Chunks
      Type float32 numpy.ndarray