eNATL60_BLBT02_SSH
Hourly outputs of eNATL60-BLBT02 (with tides) Sea Surface Height
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/MEOM-NEMO.yaml")
ds = cat["eNATL60_BLBT02_SSH"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk - Initialize the
gcloudcommand line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init - Finally, use
gcloudto establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
| url | https://mycore.core-cloud.net/index.php/s/zQAcDHWhxiGt1RW#pdfviewer |
| tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- axis_nbounds: 2
- time_counter: 11688
- x: 8354
- y: 4729
- time_centered(time_counter)datetime64[ns]dask.array<chunksize=(240,), meta=np.ndarray>
- bounds :
- time_centered_bounds
- long_name :
- Time axis
- standard_name :
- time
- time_origin :
- 1900-01-01 00:00:00
Array Chunk Bytes 93.50 kB 1.92 kB Shape (11688,) (240,) Count 50 Tasks 49 Chunks Type datetime64[ns] numpy.ndarray - time_counter(time_counter)datetime64[ns]2010-01-19T00:30:00 ... 2009-09-17T23:30:00
- axis :
- T
- bounds :
- time_counter_bounds
- long_name :
- Time axis
- standard_name :
- time
- time_origin :
- 1900-01-01 00:00:00
array(['2010-01-19T00:30:00.000000000', '2010-01-19T01:30:00.000000000', '2010-01-19T02:30:00.000000000', ..., '2009-09-17T21:30:00.000000000', '2009-09-17T22:30:00.000000000', '2009-09-17T23:30:00.000000000'], dtype='datetime64[ns]')
- nav_lat(y, x)float32dask.array<chunksize=(240, 480), meta=np.ndarray>
- long_name :
- Latitude
- standard_name :
- latitude
- units :
- degrees_north
Array Chunk Bytes 158.02 MB 460.80 kB Shape (4729, 8354) (240, 480) Count 361 Tasks 360 Chunks Type float32 numpy.ndarray - nav_lon(y, x)float32dask.array<chunksize=(240, 480), meta=np.ndarray>
- long_name :
- Longitude
- standard_name :
- longitude
- units :
- degrees_east
Array Chunk Bytes 158.02 MB 460.80 kB Shape (4729, 8354) (240, 480) Count 361 Tasks 360 Chunks Type float32 numpy.ndarray - sossheig(time_counter, y, x)float32dask.array<chunksize=(240, 240, 480), meta=np.ndarray>
- interval_write :
- 1 h
- long_name :
- sea surface height
- online_operation :
- average
- standard_name :
- sea_surface_height_above_geoid
- units :
- m
Array Chunk Bytes 1.85 TB 110.59 MB Shape (11688, 4729, 8354) (240, 240, 480) Count 17641 Tasks 17640 Chunks Type float32 numpy.ndarray - time_centered_bounds(time_counter, axis_nbounds)datetime64[ns]dask.array<chunksize=(240, 2), meta=np.ndarray>
Array Chunk Bytes 187.01 kB 3.84 kB Shape (11688, 2) (240, 2) Count 50 Tasks 49 Chunks Type datetime64[ns] numpy.ndarray - time_counter_bounds(time_counter, axis_nbounds)datetime64[ns]dask.array<chunksize=(240, 2), meta=np.ndarray>
Array Chunk Bytes 187.01 kB 3.84 kB Shape (11688, 2) (240, 2) Count 50 Tasks 49 Chunks Type datetime64[ns] numpy.ndarray
- Conventions :
- CF-1.6
- TimeStamp :
- 24/03/2019 14:43:29 +0100
- description :
- ocean T grid variables
- file_name :
- eNATL60-BLBT02X_1h_20100101_20100125_gridT-2D_20100119-20100119.nc
- ibegin :
- 0
- jbegin :
- 0
- name :
- /scratch/tmp/5251284/eNATL60-BLBT02X_1h_20100101_20100125_gridT-2D
- ni :
- 8354
- nj :
- 10
- timeStamp :
- 2019-Mar-24 06:31:35 GMT
- title :
- ocean T grid variables
- uuid :
- 80877374-74d2-468e-9fc6-d8cae8009094
