NATL60_horizontal_grid

NEMO NATL60 Ocean Simulation Horizontal Grid

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/MEOM-NEMO.yaml") ds = cat["NATL60_horizontal_grid"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

url https://github.com/meom-configurations/NATL60-CJM165
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • t: 1
    • x: 5422
    • y: 3454
      • e1f
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e1t
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e1u
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e1v
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e2f
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e2t
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e2u
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • e2v
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • ff
        (t, y, x)
        float32
        dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
        Array Chunk
        Bytes 74.91 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 432, 678)
        Count 65 Tasks 64 Chunks
        Type float32 numpy.ndarray
        5422 3454 1
      • glamf
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • glamt
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • glamu
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • glamv
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • gphif
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • gphit
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • gphiu
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • gphiv
        (t, y, x)
        float64
        dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
        Array Chunk
        Bytes 149.82 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 216, 678)
        Count 129 Tasks 128 Chunks
        Type float64 numpy.ndarray
        5422 3454 1
      • nav_lat
        (t, y, x)
        float32
        dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
        long_name :
        Latitude
        units :
        degrees_north
        valid_max :
        67.48115539550781
        valid_min :
        26.417089462280273
        Array Chunk
        Bytes 74.91 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 432, 678)
        Count 65 Tasks 64 Chunks
        Type float32 numpy.ndarray
        5422 3454 1
      • nav_lon
        (t, y, x)
        float32
        dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
        long_name :
        Longitude
        units :
        degrees_east
        valid_max :
        17.958284378051758
        valid_min :
        -86.67500305175781
        Array Chunk
        Bytes 74.91 MB 1.17 MB
        Shape (1, 3454, 5422) (1, 432, 678)
        Count 65 Tasks 64 Chunks
        Type float32 numpy.ndarray
        5422 3454 1
    • NCO :
      4.4.2
      comment :
      NATL60 file, resized for the V4 Bathymetry
      history :
      Thu Apr 23 12:19:18 2015: ncrename -d time_counter,t NATL60_v4.1_cdf_mesh_hgr.nc
      nco_openmp_thread_number :
      1