NATL60_horizontal_grid
NEMO NATL60 Ocean Simulation Horizontal Grid
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/MEOM-NEMO.yaml")
ds = cat["NATL60_horizontal_grid"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://github.com/meom-configurations/NATL60-CJM165 |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- t: 1
- x: 5422
- y: 3454
- e1f(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e1t(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e1u(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e1v(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e2f(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e2t(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e2u(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - e2v(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - ff(t, y, x)float32dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
Array Chunk Bytes 74.91 MB 1.17 MB Shape (1, 3454, 5422) (1, 432, 678) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - glamf(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - glamt(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - glamu(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - glamv(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - gphif(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - gphit(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - gphiu(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - gphiv(t, y, x)float64dask.array<chunksize=(1, 216, 678), meta=np.ndarray>
Array Chunk Bytes 149.82 MB 1.17 MB Shape (1, 3454, 5422) (1, 216, 678) Count 129 Tasks 128 Chunks Type float64 numpy.ndarray - nav_lat(t, y, x)float32dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
- long_name :
- Latitude
- units :
- degrees_north
- valid_max :
- 67.48115539550781
- valid_min :
- 26.417089462280273
Array Chunk Bytes 74.91 MB 1.17 MB Shape (1, 3454, 5422) (1, 432, 678) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - nav_lon(t, y, x)float32dask.array<chunksize=(1, 432, 678), meta=np.ndarray>
- long_name :
- Longitude
- units :
- degrees_east
- valid_max :
- 17.958284378051758
- valid_min :
- -86.67500305175781
Array Chunk Bytes 74.91 MB 1.17 MB Shape (1, 3454, 5422) (1, 432, 678) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray
- NCO :
- 4.4.2
- comment :
- NATL60 file, resized for the V4 Bathymetry
- history :
- Thu Apr 23 12:19:18 2015: ncrename -d time_counter,t NATL60_v4.1_cdf_mesh_hgr.nc
- nco_openmp_thread_number :
- 1