NATL60_coord
NEMO NATL60 Ocean Simulation Coordinates and Masks
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/MEOM-NEMO.yaml")
ds = cat["NATL60_coord"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://github.com/meom-configurations/NATL60-CJM165 |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- t: 1
- x: 5422
- y: 3454
- z: 300
- fmask(t, z, y, x)int8dask.array<chunksize=(1, 1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 5.62 GB 18.73 MB Shape (1, 300, 3454, 5422) (1, 1, 3454, 5422) Count 301 Tasks 300 Chunks Type int8 numpy.ndarray - fmaskutil(t, y, x)int8dask.array<chunksize=(1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 18.73 MB 18.73 MB Shape (1, 3454, 5422) (1, 3454, 5422) Count 2 Tasks 1 Chunks Type int8 numpy.ndarray - nav_lat(y, x)float32dask.array<chunksize=(3454, 5422), meta=np.ndarray>
Array Chunk Bytes 74.91 MB 74.91 MB Shape (3454, 5422) (3454, 5422) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - nav_lev(z)float32dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 1.20 kB 4 B Shape (300,) (1,) Count 301 Tasks 300 Chunks Type float32 numpy.ndarray - nav_lon(y, x)float32dask.array<chunksize=(3454, 5422), meta=np.ndarray>
Array Chunk Bytes 74.91 MB 74.91 MB Shape (3454, 5422) (3454, 5422) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - time_counter(t)float32dask.array<chunksize=(1,), meta=np.ndarray>
Array Chunk Bytes 4 B 4 B Shape (1,) (1,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - tmask(t, z, y, x)int8dask.array<chunksize=(1, 1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 5.62 GB 18.73 MB Shape (1, 300, 3454, 5422) (1, 1, 3454, 5422) Count 301 Tasks 300 Chunks Type int8 numpy.ndarray - tmaskutil(t, y, x)int8dask.array<chunksize=(1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 18.73 MB 18.73 MB Shape (1, 3454, 5422) (1, 3454, 5422) Count 2 Tasks 1 Chunks Type int8 numpy.ndarray - umask(t, z, y, x)int8dask.array<chunksize=(1, 1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 5.62 GB 18.73 MB Shape (1, 300, 3454, 5422) (1, 1, 3454, 5422) Count 301 Tasks 300 Chunks Type int8 numpy.ndarray - umaskutil(t, y, x)int8dask.array<chunksize=(1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 18.73 MB 18.73 MB Shape (1, 3454, 5422) (1, 3454, 5422) Count 2 Tasks 1 Chunks Type int8 numpy.ndarray - vmask(t, z, y, x)int8dask.array<chunksize=(1, 1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 5.62 GB 18.73 MB Shape (1, 300, 3454, 5422) (1, 1, 3454, 5422) Count 301 Tasks 300 Chunks Type int8 numpy.ndarray - vmaskutil(t, y, x)int8dask.array<chunksize=(1, 3454, 5422), meta=np.ndarray>
Array Chunk Bytes 18.73 MB 18.73 MB Shape (1, 3454, 5422) (1, 3454, 5422) Count 2 Tasks 1 Chunks Type int8 numpy.ndarray