NATL60_SSH

Daily outputs of NATL60-CJM165 Sea Surface Height

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/MEOM-NEMO.yaml") ds = cat["NATL60_SSH"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

url https://github.com/meom-configurations/NATL60-CJM165
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • axis_nbounds: 2
    • time_counter: 8760
    • x: 5422
    • y: 3454
    • nav_lat
      (y, x)
      float32
      dask.array<chunksize=(432, 678), meta=np.ndarray>
      long_name :
      Latitude
      nav_model :
      grid_T
      standard_name :
      latitude
      units :
      degrees_north
      Array Chunk
      Bytes 74.91 MB 1.17 MB
      Shape (3454, 5422) (432, 678)
      Count 65 Tasks 64 Chunks
      Type float32 numpy.ndarray
      5422 3454
    • nav_lon
      (y, x)
      float32
      dask.array<chunksize=(432, 678), meta=np.ndarray>
      long_name :
      Longitude
      nav_model :
      grid_T
      standard_name :
      longitude
      units :
      degrees_east
      Array Chunk
      Bytes 74.91 MB 1.17 MB
      Shape (3454, 5422) (432, 678)
      Count 65 Tasks 64 Chunks
      Type float32 numpy.ndarray
      5422 3454
    • time_centered
      (time_counter)
      datetime64[ns]
      dask.array<chunksize=(744,), meta=np.ndarray>
      bounds :
      time_centered_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1958-01-01 00:00:00
      Array Chunk
      Bytes 70.08 kB 5.95 kB
      Shape (8760,) (744,)
      Count 13 Tasks 12 Chunks
      Type datetime64[ns] numpy.ndarray
      8760 1
    • time_counter
      (time_counter)
      datetime64[ns]
      2012-10-01T00:30:00 ... 2013-09-30T23:30:00
      axis :
      T
      bounds :
      time_counter_bounds
      long_name :
      Time axis
      standard_name :
      time
      time_origin :
      1958-01-01 00:00:00
      array(['2012-10-01T00:30:00.000000000', '2012-10-01T01:30:00.000000000',
             '2012-10-01T02:30:00.000000000', ..., '2013-09-30T21:30:00.000000000',
             '2013-09-30T22:30:00.000000000', '2013-09-30T23:30:00.000000000'],
            dtype='datetime64[ns]')
    • sossheig
      (time_counter, y, x)
      float32
      dask.array<chunksize=(1, 3454, 5422), meta=np.ndarray>
      cell_methods :
      time: mean (interval: 40 s)
      interval_operation :
      40 s
      interval_write :
      1 h
      long_name :
      sea surface height
      online_operation :
      average
      standard_name :
      sea_surface_height_above_geoid
      units :
      m
      Array Chunk
      Bytes 656.21 GB 74.91 MB
      Shape (8760, 3454, 5422) (1, 3454, 5422)
      Count 8761 Tasks 8760 Chunks
      Type float32 numpy.ndarray
      5422 3454 8760
    • time_counter_bounds
      (time_counter, axis_nbounds)
      datetime64[ns]
      dask.array<chunksize=(744, 2), meta=np.ndarray>
      Array Chunk
      Bytes 140.16 kB 11.90 kB
      Shape (8760, 2) (744, 2)
      Count 13 Tasks 12 Chunks
      Type datetime64[ns] numpy.ndarray
      2 8760
  • CASE :
    CJM165
    CONFIG :
    NATL60
    Conventions :
    CF-1.5
    NCO :
    4.4.6
    description :
    ocean T grid variables
    history :
    Tue Oct 30 18:04:29 2018: ncks -v sossheig ALL/NATL60-CJM165_y2012m10d01.1h_gridT.nc SSH/NATL60-CJM165_y2012m10d01.1h_SSH.nc
    output_frequency :
    1h
    production :
    An IPSL model
    start_date :
    20120301
    title :
    ocean T grid variables