LLC4320_grid
MITgcm LLC4320 Ocean Simulation Grid
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/llc4320.yaml")
ds = cat["LLC4320_grid"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | http://online.kitp.ucsb.edu/online/blayers18/menemenlis/ |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- face: 13
- i: 4320
- i_g: 4320
- j: 4320
- j_g: 4320
- k_p1: 2
- time: 9030
- CS(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- AngleCS
- standard_name :
- Cos of grid orientation angle
- units :
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - Depth(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- XC YC
- long_name :
- ocean depth
- standard_name :
- ocean_depth
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - PHrefC()float32...
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
array(15.4017, dtype=float32)
- PHrefF(k_p1)float32dask.array<chunksize=(2,), meta=np.ndarray>
- long_name :
- Reference Hydrostatic Pressure
- standard_name :
- cell_reference_pressure
- units :
- m2 s-2
Array Chunk Bytes 8 B 8 B Shape (2,) (2,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - SN(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- AngleSN
- standard_name :
- Sin of grid orientation angle
- units :
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - XC(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - XG(face, j_g, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YG XG
- long_name :
- longitude
- standard_name :
- longitude_at_f_location
- units :
- degrees_east
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - YC(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - YG(face, j_g, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- long_name :
- latitude
- standard_name :
- latitude_at_f_location
- units :
- degrees_north
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - Z()float32...
- long_name :
- vertical coordinate of cell center
- positive :
- down
- standard_name :
- depth
- units :
- m
array(-1.57, dtype=float32)
- Zl()float32...
- long_name :
- vertical coordinate of upper cell interface
- positive :
- down
- standard_name :
- depth_at_upper_w_location
- units :
- m
array(-1., dtype=float32)
- Zp1(k_p1)float32dask.array<chunksize=(2,), meta=np.ndarray>
- long_name :
- vertical coordinate of cell interface
- positive :
- down
- standard_name :
- depth_at_w_location
- units :
- m
Array Chunk Bytes 8 B 8 B Shape (2,) (2,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - Zu()float32...
- long_name :
- vertical coordinate of lower cell interface
- positive :
- down
- standard_name :
- depth_at_lower_w_location
- units :
- m
array(-2.14, dtype=float32)
- drC(k_p1)float32dask.array<chunksize=(2,), meta=np.ndarray>
- long_name :
- cell z size
- standard_name :
- cell_z_size_at_w_location
- units :
- m
Array Chunk Bytes 8 B 8 B Shape (2,) (2,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - drF()float32...
- long_name :
- cell z size
- standard_name :
- cell_z_size
- units :
- m
array(1.14, dtype=float32)
- dxC(face, j, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_u_location
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - dxG(face, j_g, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell x size
- standard_name :
- cell_x_size_at_v_location
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - dyC(face, j_g, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_v_location
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - dyG(face, j, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XG
- long_name :
- cell y size
- standard_name :
- cell_y_size_at_u_location
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - face(face)int640 1 2 3 4 5 6 7 8 9 10 11 12
- standard_name :
- face_index
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
- hFacC(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - hFacS(face, j_g, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_v_location
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - hFacW(face, j, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- long_name :
- vertical fraction of open cell
- standard_name :
- cell_vertical_fraction_at_u_location
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - i(i)int640 1 2 3 4 ... 4316 4317 4318 4319
- axis :
- X
- long_name :
- x-dimension of the t grid
- standard_name :
- x_grid_index
- swap_dim :
- XC
array([ 0, 1, 2, ..., 4317, 4318, 4319])
- i_g(i_g)int640 1 2 3 4 ... 4316 4317 4318 4319
- axis :
- X
- c_grid_axis_shift :
- -0.5
- long_name :
- x-dimension of the u grid
- standard_name :
- x_grid_index_at_u_location
- swap_dim :
- XG
array([ 0, 1, 2, ..., 4317, 4318, 4319])
- iter(time)int64dask.array<chunksize=(9030,), meta=np.ndarray>
Array Chunk Bytes 72.24 kB 72.24 kB Shape (9030,) (9030,) Count 2 Tasks 1 Chunks Type int64 numpy.ndarray - j(j)int640 1 2 3 4 ... 4316 4317 4318 4319
- axis :
- Y
- long_name :
- y-dimension of the t grid
- standard_name :
- y_grid_index
- swap_dim :
- YC
array([ 0, 1, 2, ..., 4317, 4318, 4319])
- j_g(j_g)int640 1 2 3 4 ... 4316 4317 4318 4319
- axis :
- Y
- c_grid_axis_shift :
- -0.5
- long_name :
- y-dimension of the v grid
- standard_name :
- y_grid_index_at_v_location
- swap_dim :
- YG
array([ 0, 1, 2, ..., 4317, 4318, 4319])
- k()int64...
- axis :
- Z
- long_name :
- z-dimension of the t grid
- standard_name :
- z_grid_index
- swap_dim :
- Z
array(1)
- k_l()int64...
- axis :
- Z
- c_grid_axis_shift :
- -0.5
- long_name :
- z-dimension of the w grid
- standard_name :
- z_grid_index_at_upper_w_location
- swap_dim :
- Zl
array(1)
- k_p1(k_p1)int640 1
- axis :
- Z
- c_grid_axis_shift :
- [-0.5, 0.5]
- long_name :
- z-dimension of the w grid
- standard_name :
- z_grid_index_at_w_location
- swap_dim :
- Zp1
array([0, 1])
- k_u()int64...
- axis :
- Z
- c_grid_axis_shift :
- 0.5
- long_name :
- z-dimension of the w grid
- standard_name :
- z_grid_index_at_lower_w_location
- swap_dim :
- Zu
array(1)
- rA(face, j, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YC XC
- long_name :
- cell area
- standard_name :
- cell_area
- units :
- m2
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - rAs(face, j_g, i)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- long_name :
- cell area
- standard_name :
- cell_area_at_v_location
- units :
- m2
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - rAw(face, j, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YG XC
- long_name :
- cell area
- standard_name :
- cell_area_at_u_location
- units :
- m2
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - rAz(face, j_g, i_g)float32dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
- coordinate :
- YG XG
- long_name :
- cell area
- standard_name :
- cell_area_at_f_location
- units :
- m
Array Chunk Bytes 970.44 MB 74.65 MB Shape (13, 4320, 4320) (1, 4320, 4320) Count 14 Tasks 13 Chunks Type float32 numpy.ndarray - time(time)datetime64[ns]2011-09-13 ... 2012-09-23T05:00:00
- axis :
- T
- long_name :
- Time
- standard_name :
- time
array(['2011-09-13T00:00:00.000000000', '2011-09-13T01:00:00.000000000', '2011-09-13T02:00:00.000000000', ..., '2012-09-23T03:00:00.000000000', '2012-09-23T04:00:00.000000000', '2012-09-23T05:00:00.000000000'], dtype='datetime64[ns]')
- Conventions :
- CF-1.6
- history :
- Created by calling `open_mdsdataset(llc_method='smallchunks', nz=None, ny=None, nx=None, default_dtype=dtype('>f4'), ignore_unknown_vars=True, chunks=None, endian='>', swap_dims=False, grid_vars_to_coords=True, geometry='llc', calendar='gregorian', ref_date=None, delta_t=1, read_grid=True, prefix=None, iters=487152, grid_dir='/data/scratch/rpa/LLC/llc_4320/run', data_dir='/data/scratch/rpa/LLC/llc_4320/run')`
- source :
- MITgcm
- title :
- netCDF wrapper of MITgcm MDS binary data