LLC4320_grid

MITgcm LLC4320 Ocean Simulation Grid

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/llc4320.yaml") ds = cat["LLC4320_grid"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

url http://online.kitp.ucsb.edu/online/blayers18/menemenlis/
tags ['ocean', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • face: 13
    • i: 4320
    • i_g: 4320
    • j: 4320
    • j_g: 4320
    • k_p1: 2
    • time: 9030
    • CS
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      AngleCS
      standard_name :
      Cos of grid orientation angle
      units :
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • Depth
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      XC YC
      long_name :
      ocean depth
      standard_name :
      ocean_depth
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • PHrefC
      ()
      float32
      ...
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      array(15.4017, dtype=float32)
    • PHrefF
      (k_p1)
      float32
      dask.array<chunksize=(2,), meta=np.ndarray>
      long_name :
      Reference Hydrostatic Pressure
      standard_name :
      cell_reference_pressure
      units :
      m2 s-2
      Array Chunk
      Bytes 8 B 8 B
      Shape (2,) (2,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 1
    • SN
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      AngleSN
      standard_name :
      Sin of grid orientation angle
      units :
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • XC
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      longitude
      standard_name :
      longitude
      units :
      degrees_east
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • XG
      (face, j_g, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YG XG
      long_name :
      longitude
      standard_name :
      longitude_at_f_location
      units :
      degrees_east
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • YC
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      latitude
      standard_name :
      latitude
      units :
      degrees_north
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • YG
      (face, j_g, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      long_name :
      latitude
      standard_name :
      latitude_at_f_location
      units :
      degrees_north
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • Z
      ()
      float32
      ...
      long_name :
      vertical coordinate of cell center
      positive :
      down
      standard_name :
      depth
      units :
      m
      array(-1.57, dtype=float32)
    • Zl
      ()
      float32
      ...
      long_name :
      vertical coordinate of upper cell interface
      positive :
      down
      standard_name :
      depth_at_upper_w_location
      units :
      m
      array(-1., dtype=float32)
    • Zp1
      (k_p1)
      float32
      dask.array<chunksize=(2,), meta=np.ndarray>
      long_name :
      vertical coordinate of cell interface
      positive :
      down
      standard_name :
      depth_at_w_location
      units :
      m
      Array Chunk
      Bytes 8 B 8 B
      Shape (2,) (2,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 1
    • Zu
      ()
      float32
      ...
      long_name :
      vertical coordinate of lower cell interface
      positive :
      down
      standard_name :
      depth_at_lower_w_location
      units :
      m
      array(-2.14, dtype=float32)
    • drC
      (k_p1)
      float32
      dask.array<chunksize=(2,), meta=np.ndarray>
      long_name :
      cell z size
      standard_name :
      cell_z_size_at_w_location
      units :
      m
      Array Chunk
      Bytes 8 B 8 B
      Shape (2,) (2,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 1
    • drF
      ()
      float32
      ...
      long_name :
      cell z size
      standard_name :
      cell_z_size
      units :
      m
      array(1.14, dtype=float32)
    • dxC
      (face, j, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • dxG
      (face, j_g, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell x size
      standard_name :
      cell_x_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • dyC
      (face, j_g, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_v_location
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • dyG
      (face, j, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XG
      long_name :
      cell y size
      standard_name :
      cell_y_size_at_u_location
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • face
      (face)
      int64
      0 1 2 3 4 5 6 7 8 9 10 11 12
      standard_name :
      face_index
      array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])
    • hFacC
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • hFacS
      (face, j_g, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_v_location
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • hFacW
      (face, j, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      long_name :
      vertical fraction of open cell
      standard_name :
      cell_vertical_fraction_at_u_location
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • i
      (i)
      int64
      0 1 2 3 4 ... 4316 4317 4318 4319
      axis :
      X
      long_name :
      x-dimension of the t grid
      standard_name :
      x_grid_index
      swap_dim :
      XC
      array([   0,    1,    2, ..., 4317, 4318, 4319])
    • i_g
      (i_g)
      int64
      0 1 2 3 4 ... 4316 4317 4318 4319
      axis :
      X
      c_grid_axis_shift :
      -0.5
      long_name :
      x-dimension of the u grid
      standard_name :
      x_grid_index_at_u_location
      swap_dim :
      XG
      array([   0,    1,    2, ..., 4317, 4318, 4319])
    • iter
      (time)
      int64
      dask.array<chunksize=(9030,), meta=np.ndarray>
      Array Chunk
      Bytes 72.24 kB 72.24 kB
      Shape (9030,) (9030,)
      Count 2 Tasks 1 Chunks
      Type int64 numpy.ndarray
      9030 1
    • j
      (j)
      int64
      0 1 2 3 4 ... 4316 4317 4318 4319
      axis :
      Y
      long_name :
      y-dimension of the t grid
      standard_name :
      y_grid_index
      swap_dim :
      YC
      array([   0,    1,    2, ..., 4317, 4318, 4319])
    • j_g
      (j_g)
      int64
      0 1 2 3 4 ... 4316 4317 4318 4319
      axis :
      Y
      c_grid_axis_shift :
      -0.5
      long_name :
      y-dimension of the v grid
      standard_name :
      y_grid_index_at_v_location
      swap_dim :
      YG
      array([   0,    1,    2, ..., 4317, 4318, 4319])
    • k
      ()
      int64
      ...
      axis :
      Z
      long_name :
      z-dimension of the t grid
      standard_name :
      z_grid_index
      swap_dim :
      Z
      array(1)
    • k_l
      ()
      int64
      ...
      axis :
      Z
      c_grid_axis_shift :
      -0.5
      long_name :
      z-dimension of the w grid
      standard_name :
      z_grid_index_at_upper_w_location
      swap_dim :
      Zl
      array(1)
    • k_p1
      (k_p1)
      int64
      0 1
      axis :
      Z
      c_grid_axis_shift :
      [-0.5, 0.5]
      long_name :
      z-dimension of the w grid
      standard_name :
      z_grid_index_at_w_location
      swap_dim :
      Zp1
      array([0, 1])
    • k_u
      ()
      int64
      ...
      axis :
      Z
      c_grid_axis_shift :
      0.5
      long_name :
      z-dimension of the w grid
      standard_name :
      z_grid_index_at_lower_w_location
      swap_dim :
      Zu
      array(1)
    • rA
      (face, j, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YC XC
      long_name :
      cell area
      standard_name :
      cell_area
      units :
      m2
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • rAs
      (face, j_g, i)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      long_name :
      cell area
      standard_name :
      cell_area_at_v_location
      units :
      m2
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • rAw
      (face, j, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YG XC
      long_name :
      cell area
      standard_name :
      cell_area_at_u_location
      units :
      m2
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • rAz
      (face, j_g, i_g)
      float32
      dask.array<chunksize=(1, 4320, 4320), meta=np.ndarray>
      coordinate :
      YG XG
      long_name :
      cell area
      standard_name :
      cell_area_at_f_location
      units :
      m
      Array Chunk
      Bytes 970.44 MB 74.65 MB
      Shape (13, 4320, 4320) (1, 4320, 4320)
      Count 14 Tasks 13 Chunks
      Type float32 numpy.ndarray
      4320 4320 13
    • time
      (time)
      datetime64[ns]
      2011-09-13 ... 2012-09-23T05:00:00
      axis :
      T
      long_name :
      Time
      standard_name :
      time
      array(['2011-09-13T00:00:00.000000000', '2011-09-13T01:00:00.000000000',
             '2011-09-13T02:00:00.000000000', ..., '2012-09-23T03:00:00.000000000',
             '2012-09-23T04:00:00.000000000', '2012-09-23T05:00:00.000000000'],
            dtype='datetime64[ns]')
    • Conventions :
      CF-1.6
      history :
      Created by calling `open_mdsdataset(llc_method='smallchunks', nz=None, ny=None, nx=None, default_dtype=dtype('>f4'), ignore_unknown_vars=True, chunks=None, endian='>', swap_dims=False, grid_vars_to_coords=True, geometry='llc', calendar='gregorian', ref_date=None, delta_t=1, read_grid=True, prefix=None, iters=487152, grid_dir='/data/scratch/rpa/LLC/llc_4320/run', data_dir='/data/scratch/rpa/LLC/llc_4320/run')`
      source :
      MITgcm
      title :
      netCDF wrapper of MITgcm MDS binary data