GODAS

NCEP Global Ocean Data Assimilation System

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml") ds = cat["GODAS"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

uploader_github rabernat
uploader_email rpa@ldeo.columbia.edu
url https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html
tags ['ocean', 'data assimilation']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • lat: 417
    • lat_u: 417
    • level: 40
    • level_w: 40
    • lon: 360
    • lon_u: 360
    • time: 471
    • lat
      (lat)
      float32
      -74.16667 -73.83334 ... 64.499
      GridType :
      Cylindrical Equidistant Projection Grid
      actual_range :
      [-74.5, 64.4990005493164]
      axis :
      Y
      long_name :
      latitude
      standard_name :
      latitude
      units :
      degrees_north
      array([-74.16667, -73.83334, -73.50001, ...,  63.83234,  64.16566,  64.499  ],
            dtype=float32)
    • lat_u
      (lat_u)
      float32
      -74.0 -73.66667 ... 64.66566
      GridType :
      Cylindrical Equidistant Projection Grid
      actual_range :
      [-74.0, 64.9990005493164]
      axis :
      Y
      long_name :
      latitude
      standard_name :
      latitude
      units :
      degrees_north
      array([-74.     , -73.66667, -73.33334, ...,  63.99901,  64.33234,  64.66566],
            dtype=float32)
    • level
      (level)
      float32
      5.0 15.0 25.0 ... 3972.0 4478.0
      actual_range :
      [5.0, 4478.0]
      axis :
      Z
      long_name :
      depth below sea level
      positive :
      down
      units :
      m
      array([   5.,   15.,   25.,   35.,   45.,   55.,   65.,   75.,   85.,   95.,
              105.,  115.,  125.,  135.,  145.,  155.,  165.,  175.,  185.,  195.,
              205.,  215.,  225.,  238.,  262.,  303.,  366.,  459.,  584.,  747.,
              949., 1193., 1479., 1807., 2174., 2579., 3016., 3483., 3972., 4478.],
            dtype=float32)
    • level_w
      (level_w)
      float32
      10.0 20.0 30.0 ... 4225.0 4736.0
      actual_range :
      [10.0, 4736.0]
      axis :
      Z
      long_name :
      depth below sea level
      positive :
      down
      units :
      m
      array([  10.,   20.,   30.,   40.,   50.,   60.,   70.,   80.,   90.,  100.,
              110.,  120.,  130.,  140.,  150.,  160.,  170.,  180.,  190.,  200.,
              210.,  220.,  231.,  250.,  282.,  334.,  412.,  521.,  665.,  848.,
             1071., 1336., 1643., 1990., 2376., 2797., 3249., 3727., 4225., 4736.],
            dtype=float32)
    • lon
      (lon)
      float32
      0.5 1.5 2.5 ... 357.5 358.5 359.5
      GridType :
      Cylindrical Equidistant Projection Grid
      actual_range :
      [0.5, 359.5]
      axis :
      X
      long_name :
      longitude
      standard_name :
      longitude
      units :
      degrees_east
      array([  0.5,   1.5,   2.5, ..., 357.5, 358.5, 359.5], dtype=float32)
    • lon_u
      (lon_u)
      float32
      1.0 2.0 3.0 ... 358.0 359.0 360.0
      GridType :
      Cylindrical Equidistant Projection Grid
      actual_range :
      [1.0, 360.0]
      axis :
      X
      long_name :
      longitude
      standard_name :
      longitude
      units :
      degrees_east
      array([  1.,   2.,   3., ..., 358., 359., 360.], dtype=float32)
    • time
      (time)
      datetime64[ns]
      1980-01-01 ... 2019-03-01
      avg_period :
      0000-01-00 00:00:00
      axis :
      T
      delta_t :
      0000-01-00 00:00:00
      info :
      This is the FIRST day of the averaging period.
      long_name :
      time
      standard_name :
      time
      array(['1980-01-01T00:00:00.000000000', '1980-02-01T00:00:00.000000000',
             '1980-03-01T00:00:00.000000000', ..., '2019-01-01T00:00:00.000000000',
             '2019-02-01T00:00:00.000000000', '2019-03-01T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • dbss_obil
      (time, lat, lon)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      unknown
      level_indicator :
      238
      long_name :
      Geometric Depth Below Sea Surface
      parameter_number :
      195
      parameter_table_version :
      129
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m
      unpacked_valid_range :
      [0.0, 5000.0]
      valid_range :
      [-16383, 16383]
      var_desc :
      ocean isothermal layer depth below sea surface
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • dbss_obml
      (time, lat, lon)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      unknown
      level_indicator :
      237
      long_name :
      Geometric Depth Below Sea Surface
      parameter_number :
      195
      parameter_table_version :
      129
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m
      unpacked_valid_range :
      [0.0, 5000.0]
      valid_range :
      [-16383, 16383]
      var_desc :
      ocean mixed layer depth below sea surface
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • dzdt
      (time, level_w, lat, lon)
      float32
      dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      Multiple Levels
      level_indicator :
      160
      long_name :
      Geometric vertical velocity
      parameter_number :
      40
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m/s
      unpacked_valid_range :
      [-0.0020000000949949026, 0.0020000000949949026]
      valid_range :
      [-16384, 16384]
      var_desc :
      geometric vertical velocity
      Array Chunk
      Bytes 11.31 GB 96.08 MB
      Shape (471, 40, 417, 360) (4, 40, 417, 360)
      Count 119 Tasks 118 Chunks
      Type float32 numpy.ndarray
      471 1 360 417 40
    • pottmp
      (time, level, lat, lon)
      float32
      dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      Multiple Levels
      level_indicator :
      160
      long_name :
      Potential temperature
      parameter_number :
      13
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      K
      unpacked_valid_range :
      [260.0, 310.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      potential temperature
      Array Chunk
      Bytes 11.31 GB 96.08 MB
      Shape (471, 40, 417, 360) (4, 40, 417, 360)
      Count 119 Tasks 118 Chunks
      Type float32 numpy.ndarray
      471 1 360 417 40
    • salt
      (time, level, lat, lon)
      float32
      dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      Multiple Levels
      level_indicator :
      160
      long_name :
      Salinity
      parameter_number :
      88
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      kg/kg
      unpacked_valid_range :
      [0.0, 0.10000000149011612]
      valid_range :
      [-16384, 16384]
      var_desc :
      salinity
      Array Chunk
      Bytes 11.31 GB 96.08 MB
      Shape (471, 40, 417, 360) (4, 40, 417, 360)
      Count 119 Tasks 118 Chunks
      Type float32 numpy.ndarray
      471 1 360 417 40
    • sltfl
      (time, lat, lon)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      surface
      level_indicator :
      1
      long_name :
      Salt Flux
      parameter_number :
      199
      parameter_table_version :
      129
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      g/cm2/s
      unpacked_valid_range :
      [-3.999999989900971e-06, 8.000000093488779e-07]
      valid_range :
      [-16384, 16384]
      var_desc :
      salt flux
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • sshg
      (time, lat, lon)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      surface
      level_indicator :
      1
      long_name :
      Sea Surface Height Relative to Geoid
      parameter_number :
      198
      parameter_table_version :
      129
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m
      unpacked_valid_range :
      [-3.0, 3.0]
      valid_range :
      [-16383, 16383]
      var_desc :
      sea surface height relative to geoid
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • thflx
      (time, lat, lon)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      surface
      level_indicator :
      1
      long_name :
      Total downward heat flux at surface (downward is positive)
      parameter_number :
      202
      parameter_table_version :
      129
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      W/m2
      unpacked_valid_range :
      [-1400.0, 1400.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      total downward heat flux at surface
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • ucur
      (time, level, lat_u, lon_u)
      float32
      dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      Multiple Levels
      level_indicator :
      160
      long_name :
      u-component of current
      parameter_number :
      49
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m/s
      unpacked_valid_range :
      [-2.0, 2.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      u of current
      Array Chunk
      Bytes 11.31 GB 96.08 MB
      Shape (471, 40, 417, 360) (4, 40, 417, 360)
      Count 119 Tasks 118 Chunks
      Type float32 numpy.ndarray
      471 1 360 417 40
    • uflx
      (time, lat_u, lon_u)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      surface
      level_indicator :
      1
      long_name :
      Momentum flux, u component
      parameter_number :
      124
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      N/m^2
      unpacked_valid_range :
      [-2.0, 2.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      zonal momentum flux
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
    • vcur
      (time, level, lat_u, lon_u)
      float32
      dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      Multiple Levels
      level_indicator :
      160
      long_name :
      v-component of current
      parameter_number :
      50
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      m/s
      unpacked_valid_range :
      [-2.0, 2.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      v of current
      Array Chunk
      Bytes 11.31 GB 96.08 MB
      Shape (471, 40, 417, 360) (4, 40, 417, 360)
      Count 119 Tasks 118 Chunks
      Type float32 numpy.ndarray
      471 1 360 417 40
    • vflx
      (time, lat_u, lon_u)
      float32
      dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
      center :
      US National Weather Service - NCEP (WMC)
      dataset :
      NCEP GODAS
      gds_grid_type :
      0
      level_desc :
      surface
      level_indicator :
      1
      long_name :
      Momentum flux, v component
      parameter_number :
      125
      parameter_table_version :
      2
      parent_stat :
      Individual Obs
      statistic :
      Monthly Mean
      sub_center :
      Environmental Modeling Center
      units :
      N/m^2
      unpacked_valid_range :
      [-2.0, 2.0]
      valid_range :
      [-16384, 16384]
      var_desc :
      meridional momentum flux
      Array Chunk
      Bytes 282.83 MB 7.21 MB
      Shape (471, 417, 360) (12, 417, 360)
      Count 41 Tasks 40 Chunks
      Type float32 numpy.ndarray
      360 417 471
  • Conventions :
    COARDS
    References :
    https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html
    comment :
    NOTE: THESE ARE THE BIAS CORRECTED GODAS FILES.
    creation_date :
    Sat Dec 16 20:00:00 MDT 2006
    dataset_title :
    NCEP Global Ocean Data Assimilation System (GODAS)
    grib_file :
    godas.M.198001-12.grb
    history :
    Created 2006/12 by Hoop
    html_BACKGROUND :
    http://www.cpc.ncep.noaa.gov/products/GODAS/background.shtml
    html_GODAS :
    www.cpc.ncep.noaa.gov/products/GODAS
    html_REFERENCES :
    http://www.cpc.ncep.noaa.gov/products/GODAS/background.shtml
    sfcHeatFlux :
    Note that the net surface heat flux are the total surface heat flux from the NCEP reanalysis 2 plus the relaxation terms.
    time_comment :
    The internal time stamp indicates the FIRST day of the averaging period.
    title :
    GODAS: Global Ocean Data Assimilation System