GODAS
NCEP Global Ocean Data Assimilation System
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean.yaml")
ds = cat["GODAS"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
uploader_github | rabernat |
uploader_email | rpa@ldeo.columbia.edu |
url | https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html |
tags | ['ocean', 'data assimilation'] |
Dataset Contents
xarray.Dataset
- lat: 417
- lat_u: 417
- level: 40
- level_w: 40
- lon: 360
- lon_u: 360
- time: 471
- lat(lat)float32-74.16667 -73.83334 ... 64.499
- GridType :
- Cylindrical Equidistant Projection Grid
- actual_range :
- [-74.5, 64.4990005493164]
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
array([-74.16667, -73.83334, -73.50001, ..., 63.83234, 64.16566, 64.499 ], dtype=float32)
- lat_u(lat_u)float32-74.0 -73.66667 ... 64.66566
- GridType :
- Cylindrical Equidistant Projection Grid
- actual_range :
- [-74.0, 64.9990005493164]
- axis :
- Y
- long_name :
- latitude
- standard_name :
- latitude
- units :
- degrees_north
array([-74. , -73.66667, -73.33334, ..., 63.99901, 64.33234, 64.66566], dtype=float32)
- level(level)float325.0 15.0 25.0 ... 3972.0 4478.0
- actual_range :
- [5.0, 4478.0]
- axis :
- Z
- long_name :
- depth below sea level
- positive :
- down
- units :
- m
array([ 5., 15., 25., 35., 45., 55., 65., 75., 85., 95., 105., 115., 125., 135., 145., 155., 165., 175., 185., 195., 205., 215., 225., 238., 262., 303., 366., 459., 584., 747., 949., 1193., 1479., 1807., 2174., 2579., 3016., 3483., 3972., 4478.], dtype=float32)
- level_w(level_w)float3210.0 20.0 30.0 ... 4225.0 4736.0
- actual_range :
- [10.0, 4736.0]
- axis :
- Z
- long_name :
- depth below sea level
- positive :
- down
- units :
- m
array([ 10., 20., 30., 40., 50., 60., 70., 80., 90., 100., 110., 120., 130., 140., 150., 160., 170., 180., 190., 200., 210., 220., 231., 250., 282., 334., 412., 521., 665., 848., 1071., 1336., 1643., 1990., 2376., 2797., 3249., 3727., 4225., 4736.], dtype=float32)
- lon(lon)float320.5 1.5 2.5 ... 357.5 358.5 359.5
- GridType :
- Cylindrical Equidistant Projection Grid
- actual_range :
- [0.5, 359.5]
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([ 0.5, 1.5, 2.5, ..., 357.5, 358.5, 359.5], dtype=float32)
- lon_u(lon_u)float321.0 2.0 3.0 ... 358.0 359.0 360.0
- GridType :
- Cylindrical Equidistant Projection Grid
- actual_range :
- [1.0, 360.0]
- axis :
- X
- long_name :
- longitude
- standard_name :
- longitude
- units :
- degrees_east
array([ 1., 2., 3., ..., 358., 359., 360.], dtype=float32)
- time(time)datetime64[ns]1980-01-01 ... 2019-03-01
- avg_period :
- 0000-01-00 00:00:00
- axis :
- T
- delta_t :
- 0000-01-00 00:00:00
- info :
- This is the FIRST day of the averaging period.
- long_name :
- time
- standard_name :
- time
array(['1980-01-01T00:00:00.000000000', '1980-02-01T00:00:00.000000000', '1980-03-01T00:00:00.000000000', ..., '2019-01-01T00:00:00.000000000', '2019-02-01T00:00:00.000000000', '2019-03-01T00:00:00.000000000'], dtype='datetime64[ns]')
- dbss_obil(time, lat, lon)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- unknown
- level_indicator :
- 238
- long_name :
- Geometric Depth Below Sea Surface
- parameter_number :
- 195
- parameter_table_version :
- 129
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m
- unpacked_valid_range :
- [0.0, 5000.0]
- valid_range :
- [-16383, 16383]
- var_desc :
- ocean isothermal layer depth below sea surface
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - dbss_obml(time, lat, lon)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- unknown
- level_indicator :
- 237
- long_name :
- Geometric Depth Below Sea Surface
- parameter_number :
- 195
- parameter_table_version :
- 129
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m
- unpacked_valid_range :
- [0.0, 5000.0]
- valid_range :
- [-16383, 16383]
- var_desc :
- ocean mixed layer depth below sea surface
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - dzdt(time, level_w, lat, lon)float32dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- Multiple Levels
- level_indicator :
- 160
- long_name :
- Geometric vertical velocity
- parameter_number :
- 40
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m/s
- unpacked_valid_range :
- [-0.0020000000949949026, 0.0020000000949949026]
- valid_range :
- [-16384, 16384]
- var_desc :
- geometric vertical velocity
Array Chunk Bytes 11.31 GB 96.08 MB Shape (471, 40, 417, 360) (4, 40, 417, 360) Count 119 Tasks 118 Chunks Type float32 numpy.ndarray - pottmp(time, level, lat, lon)float32dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- Multiple Levels
- level_indicator :
- 160
- long_name :
- Potential temperature
- parameter_number :
- 13
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- K
- unpacked_valid_range :
- [260.0, 310.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- potential temperature
Array Chunk Bytes 11.31 GB 96.08 MB Shape (471, 40, 417, 360) (4, 40, 417, 360) Count 119 Tasks 118 Chunks Type float32 numpy.ndarray - salt(time, level, lat, lon)float32dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- Multiple Levels
- level_indicator :
- 160
- long_name :
- Salinity
- parameter_number :
- 88
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- kg/kg
- unpacked_valid_range :
- [0.0, 0.10000000149011612]
- valid_range :
- [-16384, 16384]
- var_desc :
- salinity
Array Chunk Bytes 11.31 GB 96.08 MB Shape (471, 40, 417, 360) (4, 40, 417, 360) Count 119 Tasks 118 Chunks Type float32 numpy.ndarray - sltfl(time, lat, lon)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- surface
- level_indicator :
- 1
- long_name :
- Salt Flux
- parameter_number :
- 199
- parameter_table_version :
- 129
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- g/cm2/s
- unpacked_valid_range :
- [-3.999999989900971e-06, 8.000000093488779e-07]
- valid_range :
- [-16384, 16384]
- var_desc :
- salt flux
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - sshg(time, lat, lon)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- surface
- level_indicator :
- 1
- long_name :
- Sea Surface Height Relative to Geoid
- parameter_number :
- 198
- parameter_table_version :
- 129
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m
- unpacked_valid_range :
- [-3.0, 3.0]
- valid_range :
- [-16383, 16383]
- var_desc :
- sea surface height relative to geoid
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - thflx(time, lat, lon)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- surface
- level_indicator :
- 1
- long_name :
- Total downward heat flux at surface (downward is positive)
- parameter_number :
- 202
- parameter_table_version :
- 129
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- W/m2
- unpacked_valid_range :
- [-1400.0, 1400.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- total downward heat flux at surface
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - ucur(time, level, lat_u, lon_u)float32dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- Multiple Levels
- level_indicator :
- 160
- long_name :
- u-component of current
- parameter_number :
- 49
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m/s
- unpacked_valid_range :
- [-2.0, 2.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- u of current
Array Chunk Bytes 11.31 GB 96.08 MB Shape (471, 40, 417, 360) (4, 40, 417, 360) Count 119 Tasks 118 Chunks Type float32 numpy.ndarray - uflx(time, lat_u, lon_u)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- surface
- level_indicator :
- 1
- long_name :
- Momentum flux, u component
- parameter_number :
- 124
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- N/m^2
- unpacked_valid_range :
- [-2.0, 2.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- zonal momentum flux
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray - vcur(time, level, lat_u, lon_u)float32dask.array<chunksize=(4, 40, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- Multiple Levels
- level_indicator :
- 160
- long_name :
- v-component of current
- parameter_number :
- 50
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- m/s
- unpacked_valid_range :
- [-2.0, 2.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- v of current
Array Chunk Bytes 11.31 GB 96.08 MB Shape (471, 40, 417, 360) (4, 40, 417, 360) Count 119 Tasks 118 Chunks Type float32 numpy.ndarray - vflx(time, lat_u, lon_u)float32dask.array<chunksize=(12, 417, 360), meta=np.ndarray>
- center :
- US National Weather Service - NCEP (WMC)
- dataset :
- NCEP GODAS
- gds_grid_type :
- 0
- level_desc :
- surface
- level_indicator :
- 1
- long_name :
- Momentum flux, v component
- parameter_number :
- 125
- parameter_table_version :
- 2
- parent_stat :
- Individual Obs
- statistic :
- Monthly Mean
- sub_center :
- Environmental Modeling Center
- units :
- N/m^2
- unpacked_valid_range :
- [-2.0, 2.0]
- valid_range :
- [-16384, 16384]
- var_desc :
- meridional momentum flux
Array Chunk Bytes 282.83 MB 7.21 MB Shape (471, 417, 360) (12, 417, 360) Count 41 Tasks 40 Chunks Type float32 numpy.ndarray
- Conventions :
- COARDS
- References :
- https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html
- comment :
- NOTE: THESE ARE THE BIAS CORRECTED GODAS FILES.
- creation_date :
- Sat Dec 16 20:00:00 MDT 2006
- dataset_title :
- NCEP Global Ocean Data Assimilation System (GODAS)
- grib_file :
- godas.M.198001-12.grb
- history :
- Created 2006/12 by Hoop
- html_BACKGROUND :
- http://www.cpc.ncep.noaa.gov/products/GODAS/background.shtml
- html_GODAS :
- www.cpc.ncep.noaa.gov/products/GODAS
- html_REFERENCES :
- http://www.cpc.ncep.noaa.gov/products/GODAS/background.shtml
- sfcHeatFlux :
- Note that the net surface heat flux are the total surface heat flux from the NCEP reanalysis 2 plus the relaxation terms.
- time_comment :
- The internal time stamp indicates the FIRST day of the averaging period.
- title :
- GODAS: Global Ocean Data Assimilation System