GFDL_CM2_6_one_percent_ocean_surface
GFDL CM2.6 climate model one-percent CO2 increase ocean surface fields
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/GFDL_CM2.6.yaml")
ds = cat["GFDL_CM2_6_one_percent_ocean_surface"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://www.gfdl.noaa.gov/cm2-6/ |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- nv: 2
- st_ocean_sub01: 1
- time: 7305
- xt_ocean: 3600
- xu_ocean: 3600
- yt_ocean: 2700
- yu_ocean: 2700
- nv(nv)float641.0 2.0
- cartesian_axis :
- N
- long_name :
- vertex number
- units :
- none
array([1., 2.])
- st_ocean_sub01(st_ocean_sub01)float645.034
- cartesian_axis :
- Z
- long_name :
- tcell zstar depth
- positive :
- down
- units :
- meters
array([5.03355])
- time(time)object0181-01-01 12:00:00 ... 0200-12-31 12:00:00
- bounds :
- time_bounds
- calendar_type :
- JULIAN
- cartesian_axis :
- T
- long_name :
- time
array([cftime.DatetimeJulian(181, 1, 1, 12, 0, 0, 0), cftime.DatetimeJulian(181, 1, 2, 12, 0, 0, 0), cftime.DatetimeJulian(181, 1, 3, 12, 0, 0, 0), ..., cftime.DatetimeJulian(200, 12, 29, 12, 0, 0, 0), cftime.DatetimeJulian(200, 12, 30, 12, 0, 0, 0), cftime.DatetimeJulian(200, 12, 31, 12, 0, 0, 0)], dtype=object)
- xt_ocean(xt_ocean)float64-279.9 -279.8 ... 79.85 79.95
- cartesian_axis :
- X
- long_name :
- tcell longitude
- units :
- degrees_E
array([-279.95, -279.85, -279.75, ..., 79.75, 79.85, 79.95])
- xu_ocean(xu_ocean)float64-279.9 -279.8 -279.7 ... 79.9 80.0
- cartesian_axis :
- X
- long_name :
- ucell longitude
- units :
- degrees_E
array([-279.9, -279.8, -279.7, ..., 79.8, 79.9, 80. ])
- yt_ocean(yt_ocean)float64-81.11 -81.07 ... 89.94 89.98
- cartesian_axis :
- Y
- long_name :
- tcell latitude
- units :
- degrees_N
array([-81.108632, -81.066392, -81.024153, ..., 89.894417, 89.936657, 89.978896])
- yu_ocean(yu_ocean)float64-81.09 -81.05 -81.0 ... 89.96 90.0
- cartesian_axis :
- Y
- long_name :
- ucell latitude
- units :
- degrees_N
array([-81.087512, -81.045273, -81.003033, ..., 89.915537, 89.957776, 90. ])
- biomass_p(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface Biomass-P concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - chl(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface Chl concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - dic(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface DIC concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - htotal(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface H+ concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - irr_mix(time, st_ocean_sub01, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Mixed layer light
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W m-2
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 1, 2700, 3600) (1, 1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - kw(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Gas Exchange piston velocity fordic
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m/sec
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - o2(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface O2 concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - po4(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Surface PO4 concentration
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- mol kg-1
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - sea_level(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- effective sea level (eta_t + patm/(rho0*g)) on T cells
- standard_name :
- sea_surface_height_above_geoid
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- meter
- valid_range :
- [-1000.0, 1000.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - sea_level_sq(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- square of effective sea level (eta_t + patm/(rho0*g)) on T cells
- standard_name :
- square_of_sea_surface_height_above_geoid
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m^2
- valid_range :
- [-1000.0, 1000.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - surface_salt(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Practical Salinity
- standard_name :
- sea_surface_salinity
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- psu
- valid_range :
- [-10.0, 100.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - surface_temp(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_t geolat_t
- long_name :
- Potential temperature
- standard_name :
- sea_surface_temperature
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- degrees C
- valid_range :
- [-10.0, 500.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - usurf(time, yu_ocean, xu_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_c geolat_c
- long_name :
- i-surface current
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m/sec
- valid_range :
- [-10.0, 10.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray - vsurf(time, yu_ocean, xu_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- coordinates :
- geolon_c geolat_c
- long_name :
- j-surface current
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- m/sec
- valid_range :
- [-10.0, 10.0]
Array Chunk Bytes 284.02 GB 38.88 MB Shape (7305, 2700, 3600) (1, 2700, 3600) Count 7306 Tasks 7305 Chunks Type float32 numpy.ndarray
- filename :
- 01810101.ocean_minibling_surf_field.nc
- grid_tile :
- 1
- grid_type :
- mosaic
- title :
- CM2.6_miniBling