GFDL_CM2_6_one_percent_ocean_budgets
GFDL CM2.6 climate model one-percent CO2 increase monthly ocean budgets fields
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/GFDL_CM2.6.yaml")
ds = cat["GFDL_CM2_6_one_percent_ocean_budgets"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://www.gfdl.noaa.gov/cm2-6/ |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- nv: 2
- st_ocean: 50
- sw_ocean: 50
- time: 20
- xt_ocean: 3600
- xu_ocean: 3600
- yt_ocean: 2700
- yu_ocean: 2700
- geolat_c(yu_ocean, xu_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- uv latitude
- units :
- degrees_N
- valid_range :
- [-91.0, 91.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolat_t(yt_ocean, xt_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- tracer latitude
- units :
- degrees_N
- valid_range :
- [-91.0, 91.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolon_c(yu_ocean, xu_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- uv longitude
- units :
- degrees_E
- valid_range :
- [-281.0, 361.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolon_t(yt_ocean, xt_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- tracer longitude
- units :
- degrees_E
- valid_range :
- [-281.0, 361.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - nv(nv)float641.0 2.0
- cartesian_axis :
- N
- long_name :
- vertex number
- units :
- none
array([1., 2.])
- st_ocean(st_ocean)float645.034 15.1 ... 5.185e+03 5.395e+03
- cartesian_axis :
- Z
- edges :
- st_edges_ocean
- long_name :
- tcell zstar depth
- positive :
- down
- units :
- meters
array([5.033550e+00, 1.510065e+01, 2.521935e+01, 3.535845e+01, 4.557635e+01, 5.585325e+01, 6.626175e+01, 7.680285e+01, 8.757695e+01, 9.862325e+01, 1.100962e+02, 1.221067e+02, 1.349086e+02, 1.487466e+02, 1.640538e+02, 1.813125e+02, 2.012630e+02, 2.247773e+02, 2.530681e+02, 2.875508e+02, 3.300078e+02, 3.823651e+02, 4.467263e+02, 5.249824e+02, 6.187031e+02, 7.286921e+02, 8.549935e+02, 9.967153e+02, 1.152376e+03, 1.319997e+03, 1.497562e+03, 1.683057e+03, 1.874788e+03, 2.071252e+03, 2.271323e+03, 2.474043e+03, 2.678757e+03, 2.884898e+03, 3.092117e+03, 3.300086e+03, 3.508633e+03, 3.717567e+03, 3.926813e+03, 4.136251e+03, 4.345864e+03, 4.555566e+03, 4.765369e+03, 4.975209e+03, 5.185111e+03, 5.395023e+03])
- sw_ocean(sw_ocean)float6410.07 20.16 ... 5.29e+03 5.5e+03
- cartesian_axis :
- Z
- edges :
- sw_edges_ocean
- long_name :
- ucell zstar depth
- positive :
- down
- units :
- meters
array([ 10.0671 , 20.16 , 30.2889 , 40.4674 , 50.714802, 61.057499, 71.532303, 82.189903, 93.100098, 104.359703, 116.101402, 128.507599, 141.827606, 156.400208, 172.683105, 191.287704, 213.020096, 238.922699, 270.309509, 308.779297, 356.186401, 414.545685, 485.854401, 571.842773, 673.697571, 791.842773, 925.85437 , 1074.545654, 1236.186401, 1408.779297, 1590.30957 , 1778.922729, 1973.020142, 2171.287598, 2372.683105, 2576.400146, 2781.827637, 2988.507568, 3196.101562, 3404.359619, 3613.100098, 3822.189941, 4031.532227, 4241.057617, 4450.714844, 4660.467285, 4870.289062, 5080.160156, 5290.066895, 5500. ])
- time(time)object0181-07-01 17:00:00 ... 0200-07-01 14:00:00
- bounds :
- time_bounds
- calendar_type :
- JULIAN
- cartesian_axis :
- T
- long_name :
- time
array([cftime.DatetimeJulian(181, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(182, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(183, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(184, 7, 1, 14, 0, 0, 0), cftime.DatetimeJulian(185, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(186, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(187, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(188, 7, 1, 14, 0, 0, 0), cftime.DatetimeJulian(189, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(190, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(191, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(192, 7, 1, 14, 0, 0, 0), cftime.DatetimeJulian(193, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(194, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(195, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(196, 7, 1, 14, 0, 0, 0), cftime.DatetimeJulian(197, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(198, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(199, 7, 1, 17, 0, 0, 0), cftime.DatetimeJulian(200, 7, 1, 14, 0, 0, 0)], dtype=object)
- xt_ocean(xt_ocean)float64-279.9 -279.8 ... 79.85 79.95
- cartesian_axis :
- X
- long_name :
- tcell longitude
- units :
- degrees_E
array([-279.95, -279.85, -279.75, ..., 79.75, 79.85, 79.95])
- xu_ocean(xu_ocean)float64-279.9 -279.8 -279.7 ... 79.9 80.0
- cartesian_axis :
- X
- long_name :
- ucell longitude
- units :
- degrees_E
array([-279.9, -279.8, -279.7, ..., 79.8, 79.9, 80. ])
- yt_ocean(yt_ocean)float64-81.11 -81.07 ... 89.94 89.98
- cartesian_axis :
- Y
- long_name :
- tcell latitude
- units :
- degrees_N
array([-81.108632, -81.066392, -81.024153, ..., 89.894417, 89.936657, 89.978896])
- yu_ocean(yu_ocean)float64-81.09 -81.05 -81.0 ... 89.96 90.0
- cartesian_axis :
- Y
- long_name :
- ucell latitude
- units :
- degrees_N
array([-81.087512, -81.045273, -81.003033, ..., 89.915537, 89.957776, 90. ])
- frazil_2d(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- ocn frazil heat flux over time step
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - net_sfc_heating(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- surface ocean heat flux coming through coupler and mass transfer
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-10000.0, 10000.0]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - rho_dzt(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- t-cell rho*thickness
- standard_name :
- sea_water_mass_per_unit_area
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- (kg/m^3)*m
- valid_range :
- [-100000000.0, 100000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - sfc_hflux_coupler(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- surface heat flux coming through coupler
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-10000.0, 10000.0]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - sfc_hflux_pme(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- heat flux (relative to 0C) from pme transfer of water across ocean surface
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-10000.0, 10000.0]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - sw_heat(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- penetrative shortwave heating
- standard_name :
- downwelling_shortwave_flux_in_sea_water
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - swflx(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- shortwave flux into ocean (>0 heats ocean)
- standard_name :
- surface_net_downward_shortwave_flux
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- W/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - temp_advection(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rho*dzt*advection tendency
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_eta_smooth(time, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- surface smoother for temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-1.0000000272564224e+16, 1.0000000272564224e+16]
Array Chunk Bytes 777.60 MB 38.88 MB Shape (20, 2700, 3600) (1, 2700, 3600) Count 21 Tasks 20 Chunks Type float32 numpy.ndarray - temp_nonlocal_KPP(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rho*dzt*nonlocal tendency from KPP
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_rivermix(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rivermix*rho_dzt*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watt/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_submeso(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- rho*dzt*cp*submesoscale tendency (heating)
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-10000000000.0, 10000000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_tendency(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- time tendency for tracer Potential temperature
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-1.0000000272564224e+16, 1.0000000272564224e+16]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_vdiffuse_impl(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- implicit vert diffusion of heat
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts/m^2
- valid_range :
- [-1.0000000272564224e+16, 1.0000000272564224e+16]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_xflux_adv(time, st_ocean, yt_ocean, xu_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rho*dzt*dyt*u*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_yflux_adv(time, st_ocean, yu_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rho*dzt*dxt*v*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_yflux_submeso(time, st_ocean, yu_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*submeso_yflux*dxt*rho_dzt*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watt
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - temp_zflux_adv(time, sw_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- cp*rho*dxt*dyt*wt*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - uhrho_et(time, st_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- uhrho_et on horz face of T-cells
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- (kg/m^3)*m^2/sec
- valid_range :
- [-1000000.0, 1000000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray - wrhot(time, sw_ocean, yt_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- rho*dia-surface velocity T-points
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- (kg/m^3)*m/sec
- valid_range :
- [-100000.0, 100000.0]
Array Chunk Bytes 38.88 GB 194.40 MB Shape (20, 50, 2700, 3600) (1, 5, 2700, 3600) Count 201 Tasks 200 Chunks Type float32 numpy.ndarray
- NCO :
- 4.1.0
- filename :
- 01810101.ocean_budgets.nc
- grid_tile :
- 1
- grid_type :
- mosaic
- history :
- Fri Apr 18 16:04:30 2014: ncks --64bit --hdr_pad 15000 -A uhrho_et.tmp.nc wrhot.tmp.nc Fri Apr 18 15:38:58 2014: ncra -O -v uhrho_et,nv,time_bounds 01810101/01810101.ocean_budgets.nc 01810101/uhrho_et.tmp.nc
- nco_openmp_thread_number :
- 1
- title :
- CM2.6_miniBling