GFDL_CM2_6_control_ocean_transport
GFDL CM2.6 climate model control run monthly ocean transport fields
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/ocean/GFDL_CM2.6.yaml")
ds = cat["GFDL_CM2_6_control_ocean_transport"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://www.gfdl.noaa.gov/cm2-6/ |
tags | ['ocean', 'model'] |
Dataset Contents
xarray.Dataset
- grid_xt_ocean: 3600
- grid_yu_ocean: 2700
- nv: 2
- potrho: 80
- potrho_edges: 81
- st_edges_ocean: 51
- st_ocean: 50
- time: 240
- xt_ocean: 3600
- xu_ocean: 3600
- yt_ocean: 2700
- yu_ocean: 2700
- geolat_c(yu_ocean, xu_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- uv latitude
- units :
- degrees_N
- valid_range :
- [-91.0, 91.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolat_t(yt_ocean, xt_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- tracer latitude
- units :
- degrees_N
- valid_range :
- [-91.0, 91.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolon_c(yu_ocean, xu_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- uv longitude
- units :
- degrees_E
- valid_range :
- [-281.0, 361.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - geolon_t(yt_ocean, xt_ocean)float32dask.array<chunksize=(338, 450), meta=np.ndarray>
- cell_methods :
- time: point
- long_name :
- tracer longitude
- units :
- degrees_E
- valid_range :
- [-281.0, 361.0]
Array Chunk Bytes 38.88 MB 608.40 kB Shape (2700, 3600) (338, 450) Count 65 Tasks 64 Chunks Type float32 numpy.ndarray - grid_xt_ocean(grid_xt_ocean)float64-279.9 -279.8 ... 79.85 79.95
- cartesian_axis :
- X
- long_name :
- tcell longitude
- units :
- degrees_E
array([-279.95, -279.85, -279.75, ..., 79.75, 79.85, 79.95])
- grid_yu_ocean(grid_yu_ocean)float64-81.09 -81.05 -81.0 ... 89.96 90.0
- cartesian_axis :
- Y
- long_name :
- ucell latitude
- units :
- degrees_N
array([-81.087512, -81.045273, -81.003033, ..., 89.915537, 89.957776, 90. ])
- nv(nv)float641.0 2.0
- cartesian_axis :
- N
- long_name :
- vertex number
- units :
- none
array([1., 2.])
- potrho(potrho)float641.028e+03 1.028e+03 ... 1.038e+03
- cartesian_axis :
- Z
- edges :
- potrho_edges
- long_name :
- potential density
- positive :
- down
- units :
- kg/m^3
array([1028.0625, 1028.1875, 1028.3125, 1028.4375, 1028.5625, 1028.6875, 1028.8125, 1028.9375, 1029.0625, 1029.1875, 1029.3125, 1029.4375, 1029.5625, 1029.6875, 1029.8125, 1029.9375, 1030.0625, 1030.1875, 1030.3125, 1030.4375, 1030.5625, 1030.6875, 1030.8125, 1030.9375, 1031.0625, 1031.1875, 1031.3125, 1031.4375, 1031.5625, 1031.6875, 1031.8125, 1031.9375, 1032.0625, 1032.1875, 1032.3125, 1032.4375, 1032.5625, 1032.6875, 1032.8125, 1032.9375, 1033.0625, 1033.1875, 1033.3125, 1033.4375, 1033.5625, 1033.6875, 1033.8125, 1033.9375, 1034.0625, 1034.1875, 1034.3125, 1034.4375, 1034.5625, 1034.6875, 1034.8125, 1034.9375, 1035.0625, 1035.1875, 1035.3125, 1035.4375, 1035.5625, 1035.6875, 1035.8125, 1035.9375, 1036.0625, 1036.1875, 1036.3125, 1036.4375, 1036.5625, 1036.6875, 1036.8125, 1036.9375, 1037.0625, 1037.1875, 1037.3125, 1037.4375, 1037.5625, 1037.6875, 1037.8125, 1037.9375])
- potrho_edges(potrho_edges)float641.028e+03 1.028e+03 ... 1.038e+03
- cartesian_axis :
- Z
- long_name :
- potential density edges
- positive :
- down
- units :
- kg/m^3
array([1028. , 1028.125, 1028.25 , 1028.375, 1028.5 , 1028.625, 1028.75 , 1028.875, 1029. , 1029.125, 1029.25 , 1029.375, 1029.5 , 1029.625, 1029.75 , 1029.875, 1030. , 1030.125, 1030.25 , 1030.375, 1030.5 , 1030.625, 1030.75 , 1030.875, 1031. , 1031.125, 1031.25 , 1031.375, 1031.5 , 1031.625, 1031.75 , 1031.875, 1032. , 1032.125, 1032.25 , 1032.375, 1032.5 , 1032.625, 1032.75 , 1032.875, 1033. , 1033.125, 1033.25 , 1033.375, 1033.5 , 1033.625, 1033.75 , 1033.875, 1034. , 1034.125, 1034.25 , 1034.375, 1034.5 , 1034.625, 1034.75 , 1034.875, 1035. , 1035.125, 1035.25 , 1035.375, 1035.5 , 1035.625, 1035.75 , 1035.875, 1036. , 1036.125, 1036.25 , 1036.375, 1036.5 , 1036.625, 1036.75 , 1036.875, 1037. , 1037.125, 1037.25 , 1037.375, 1037.5 , 1037.625, 1037.75 , 1037.875, 1038. ])
- st_edges_ocean(st_edges_ocean)float640.0 10.07 ... 5.29e+03 5.5e+03
- cartesian_axis :
- Z
- long_name :
- tcell zstar depth edges
- positive :
- down
- units :
- meters
array([ 0. , 10.0671 , 20.16 , 30.2889 , 40.4674 , 50.714802, 61.057499, 71.532303, 82.189903, 93.100098, 104.359703, 116.101402, 128.507599, 141.827606, 156.400208, 172.683105, 191.287704, 213.020096, 238.922699, 270.309509, 308.779297, 356.186401, 414.545685, 485.854401, 571.842773, 673.697571, 791.842773, 925.85437 , 1074.545654, 1236.186401, 1408.779297, 1590.30957 , 1778.922729, 1973.020142, 2171.287598, 2372.683105, 2576.400146, 2781.827637, 2988.507568, 3196.101562, 3404.359619, 3613.100098, 3822.189941, 4031.532227, 4241.057617, 4450.714844, 4660.467285, 4870.289062, 5080.160156, 5290.066895, 5500. ])
- st_ocean(st_ocean)float645.034 15.1 ... 5.185e+03 5.395e+03
- cartesian_axis :
- Z
- edges :
- st_edges_ocean
- long_name :
- tcell zstar depth
- positive :
- down
- units :
- meters
array([5.033550e+00, 1.510065e+01, 2.521935e+01, 3.535845e+01, 4.557635e+01, 5.585325e+01, 6.626175e+01, 7.680285e+01, 8.757695e+01, 9.862325e+01, 1.100962e+02, 1.221067e+02, 1.349086e+02, 1.487466e+02, 1.640538e+02, 1.813125e+02, 2.012630e+02, 2.247773e+02, 2.530681e+02, 2.875508e+02, 3.300078e+02, 3.823651e+02, 4.467263e+02, 5.249824e+02, 6.187031e+02, 7.286921e+02, 8.549935e+02, 9.967153e+02, 1.152376e+03, 1.319997e+03, 1.497562e+03, 1.683057e+03, 1.874788e+03, 2.071252e+03, 2.271323e+03, 2.474043e+03, 2.678757e+03, 2.884898e+03, 3.092117e+03, 3.300086e+03, 3.508633e+03, 3.717567e+03, 3.926813e+03, 4.136251e+03, 4.345864e+03, 4.555566e+03, 4.765369e+03, 4.975209e+03, 5.185111e+03, 5.395023e+03])
- time(time)object0181-01-16 12:00:00 ... 0200-12-16 12:00:00
- bounds :
- time_bounds
- calendar_type :
- JULIAN
- cartesian_axis :
- T
- long_name :
- time
array([cftime.DatetimeJulian(181, 1, 16, 12, 0, 0, 0), cftime.DatetimeJulian(181, 2, 15, 0, 0, 0, 0), cftime.DatetimeJulian(181, 3, 16, 12, 0, 0, 0), ..., cftime.DatetimeJulian(200, 10, 16, 12, 0, 0, 0), cftime.DatetimeJulian(200, 11, 16, 0, 0, 0, 0), cftime.DatetimeJulian(200, 12, 16, 12, 0, 0, 0)], dtype=object)
- xt_ocean(xt_ocean)float64-279.9 -279.8 ... 79.85 79.95
- cartesian_axis :
- X
- long_name :
- tcell longitude
- units :
- degrees_E
array([-279.95, -279.85, -279.75, ..., 79.75, 79.85, 79.95])
- xu_ocean(xu_ocean)float64-279.9 -279.8 -279.7 ... 79.9 80.0
- cartesian_axis :
- X
- long_name :
- ucell longitude
- units :
- degrees_E
array([-279.9, -279.8, -279.7, ..., 79.8, 79.9, 80. ])
- yt_ocean(yt_ocean)float64-81.11 -81.07 ... 89.94 89.98
- cartesian_axis :
- Y
- long_name :
- tcell latitude
- units :
- degrees_N
array([-81.108632, -81.066392, -81.024153, ..., 89.894417, 89.936657, 89.978896])
- yu_ocean(yu_ocean)float64-81.09 -81.05 -81.0 ... 89.96 90.0
- cartesian_axis :
- Y
- long_name :
- ucell latitude
- units :
- degrees_N
array([-81.087512, -81.045273, -81.003033, ..., 89.915537, 89.957776, 90. ])
- salt_xflux_adv_int_z(time, yt_ocean, xu_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral of rho*dzt*dyt*u*tracer
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- kg/sec
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - salt_yflux_adv_int_z(time, yu_ocean, xt_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral of rho*dzt*dxt*v*tracer
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- kg/sec
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - temp_xflux_adv_int_z(time, yt_ocean, xu_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral of cp*rho*dyt*u*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - temp_xflux_submeso_int_z(time, yt_ocean, xu_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral cp*submeso_xflux*dyt*rho_dzt*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watt
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - temp_yflux_adv_int_z(time, yu_ocean, xt_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral of cp*rho*dxt*v*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watts
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - temp_yflux_submeso_int_z(time, yu_ocean, xt_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- z-integral cp*submeso_yflux*dxt*rho_dzt*temp
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Watt
- valid_range :
- [-9.999999843067494e+17, 9.999999843067494e+17]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - tx_trans(time, st_ocean, yt_ocean, xu_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell i-mass transport
- standard_name :
- ocean_x_mass_transport
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 466.56 GB 194.40 MB Shape (240, 50, 2700, 3600) (1, 5, 2700, 3600) Count 2401 Tasks 2400 Chunks Type float32 numpy.ndarray - tx_trans_int_z(time, yt_ocean, xu_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell i-mass transport vertically summed
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - ty_trans(time, st_ocean, yu_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell j-mass transport
- standard_name :
- ocean_y_mass_transport
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 466.56 GB 194.40 MB Shape (240, 50, 2700, 3600) (1, 5, 2700, 3600) Count 2401 Tasks 2400 Chunks Type float32 numpy.ndarray - ty_trans_int_z(time, yu_ocean, xt_ocean)float32dask.array<chunksize=(3, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell j-mass transport vertically summed
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 9.33 GB 116.64 MB Shape (240, 2700, 3600) (3, 2700, 3600) Count 81 Tasks 80 Chunks Type float32 numpy.ndarray - ty_trans_rho(time, potrho, grid_yu_ocean, grid_xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell j-mass transport on pot_rho
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 746.50 GB 194.40 MB Shape (240, 80, 2700, 3600) (1, 5, 2700, 3600) Count 3841 Tasks 3840 Chunks Type float32 numpy.ndarray - ty_trans_submeso(time, st_ocean, yu_ocean, xt_ocean)float32dask.array<chunksize=(1, 5, 2700, 3600), meta=np.ndarray>
- cell_methods :
- time: mean
- long_name :
- T-cell mass j-transport from submesoscale param
- time_avg_info :
- average_T1,average_T2,average_DT
- units :
- Sv (10^9 kg/s)
- valid_range :
- [-1.0000000200408773e+20, 1.0000000200408773e+20]
Array Chunk Bytes 466.56 GB 194.40 MB Shape (240, 50, 2700, 3600) (1, 5, 2700, 3600) Count 2401 Tasks 2400 Chunks Type float32 numpy.ndarray
- filename :
- 01810101.ocean_trans.nc
- grid_tile :
- 1
- grid_type :
- mosaic
- title :
- CM2.6_miniBling