cgiar_pet
Global potential evapotranspiration from CGIAR-CSI
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/hydro.yaml")
ds = cat["cgiar_pet"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://cgiarcsi.community/data/global-aridity-and-pet-database |
tags | ['evapotranspiration'] |
Dataset Contents
xarray.Dataset
- lat: 18000
- lon: 43200
- month: 12
- lat(lat)float6490.0 89.99 89.98 ... -59.99 -60.0
array([ 89.995833, 89.9875 , 89.979167, ..., -59.979167, -59.9875 , -59.995833])
- lon(lon)float64-180.0 -180.0 ... 180.0 180.0
array([-179.995833, -179.9875 , -179.979167, ..., 179.979167, 179.9875 , 179.995833])
- month(month)int641 2 3 4 5 6 7 8 9 10 11 12
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
- PET(month, lat, lon)int16dask.array<chunksize=(1, 563, 2700), meta=np.ndarray>
- crs :
- +init=epsg:4326
- is_tiled :
- 1
- nodatavals :
- [-32768.0]
- res :
- [0.008333333333013115, 0.008333333332998905]
- transform :
- [0.008333333333013115, 0.0, -180.0, 0.0, -0.008333333332998905, 90.00000001198032]
Array Chunk Bytes 18.66 GB 3.04 MB Shape (12, 18000, 43200) (1, 563, 2700) Count 6145 Tasks 6144 Chunks Type int16 numpy.ndarray