wrf50_erai

Daily meteorology from 50km WRF simulation forced with ERA-Interim

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml") ds = cat["wrf50_erai"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • ni: 71
    • nj: 107
    • time: 13483
    • lat
      (ni, nj)
      float32
      dask.array<chunksize=(71, 107), meta=np.ndarray>
      FieldType :
      104
      MemoryOrder :
      XY
      description :
      LATITUDE, SOUTH IS NEGATIVE
      stagger :
      units :
      degree_north
      Array Chunk
      Bytes 30.39 kB 30.39 kB
      Shape (71, 107) (71, 107)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      107 71
    • lon
      (ni, nj)
      float32
      dask.array<chunksize=(71, 107), meta=np.ndarray>
      FieldType :
      104
      MemoryOrder :
      XY
      description :
      LONGITUDE, WEST IS NEGATIVE
      stagger :
      units :
      degree_east
      Array Chunk
      Bytes 30.39 kB 30.39 kB
      Shape (71, 107) (71, 107)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      107 71
    • time
      (time)
      datetime64[ns]
      1979-01-01T11:30:00 ... 2015-11-30T11:30:00
      FieldType :
      104
      MemoryOrder :
      0
      description :
      minutes since 1979-01-01 00:00:00
      stagger :
      array(['1979-01-01T11:30:00.000000000', '1979-01-02T11:30:00.000000000',
             '1979-01-03T11:30:00.000000000', ..., '2015-11-28T11:30:00.000000000',
             '2015-11-29T11:28:00.000000000', '2015-11-30T11:30:00.000000000'],
            dtype='datetime64[ns]')
    • DIV
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Horizontal Divergence
      note :
      calculated from du/dx+dv/dy assuming dx=dy=1
      units :
      1/s
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • PREC_ACC_C
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      ACCUMULATED CUMULUS PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
      units :
      mm
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • PREC_ACC_NC
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
      units :
      mm
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • PREC_TOT
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      ACCUMULATED CUMULUS PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
      units :
      mm
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • PSFC
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      SFC PRESSURE
      units :
      Pa
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • QVAPOR
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Water vapor mixing ratio
      units :
      kg kg-1
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      perturbation potential temperature (theta-t0)
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T2
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      TEMP at 2 M
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T2max
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Daily Maximum 2m temperature
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T2min
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Daily Minimum 2m temperature
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T_MEAN
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Daily Maximum 2m temperature
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • T_RANGE
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      Daily Maximum 2m temperature
      units :
      K
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • U
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      x-wind component
      units :
      m s-1
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • V
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      y-wind component
      units :
      m s-1
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
    • W
      (time, ni, nj)
      float32
      dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
      description :
      z-wind component
      units :
      m s-1
      Array Chunk
      Bytes 409.72 MB 110.92 MB
      Shape (13483, 71, 107) (3650, 71, 107)
      Count 5 Tasks 4 Chunks
      Type float32 numpy.ndarray
      107 71 13483
  • NCO :
    "4.5.5"
    history :
    Wed Mar 1 13:48:35 2017: ncatted -a calendar,XTIME,a,c,standard erai/wrf_daily_1979_data.nc Wed Feb 8 14:15:52 2017: ncap2 -A -sT_MEAN=(T2max+T2min)/2 wrf_daily_1979_data.nc wrf_daily_1979_data.nc Wed Feb 8 14:15:12 2017: ncap2 -A -sT_RANGE=T2max-T2min wrf_daily_1979_data.nc wrf_daily_1979_data.nc Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann
    history_of_appended_files :
    Wed Feb 8 14:15:52 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Wed Feb 8 14:15:12 2017: ncap2 -A -sT_RANGE=T2max-T2min wrf_daily_1979_data.nc wrf_daily_1979_data.nc Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann Wed Feb 8 14:15:12 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann Mon Feb 6 15:23:59 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann
    nco_openmp_thread_number :
    1