wrf50_erai
Daily meteorology from 50km WRF simulation forced with ERA-Interim
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml")
ds = cat["wrf50_erai"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
Dataset Contents
xarray.Dataset
- ni: 71
- nj: 107
- time: 13483
- lat(ni, nj)float32dask.array<chunksize=(71, 107), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LATITUDE, SOUTH IS NEGATIVE
- stagger :
- units :
- degree_north
Array Chunk Bytes 30.39 kB 30.39 kB Shape (71, 107) (71, 107) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - lon(ni, nj)float32dask.array<chunksize=(71, 107), meta=np.ndarray>
- FieldType :
- 104
- MemoryOrder :
- XY
- description :
- LONGITUDE, WEST IS NEGATIVE
- stagger :
- units :
- degree_east
Array Chunk Bytes 30.39 kB 30.39 kB Shape (71, 107) (71, 107) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - time(time)datetime64[ns]1979-01-01T11:30:00 ... 2015-11-30T11:30:00
- FieldType :
- 104
- MemoryOrder :
- 0
- description :
- minutes since 1979-01-01 00:00:00
- stagger :
array(['1979-01-01T11:30:00.000000000', '1979-01-02T11:30:00.000000000', '1979-01-03T11:30:00.000000000', ..., '2015-11-28T11:30:00.000000000', '2015-11-29T11:28:00.000000000', '2015-11-30T11:30:00.000000000'], dtype='datetime64[ns]')
- DIV(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Horizontal Divergence
- note :
- calculated from du/dx+dv/dy assuming dx=dy=1
- units :
- 1/s
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - PREC_ACC_C(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- ACCUMULATED CUMULUS PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- units :
- mm
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - PREC_ACC_NC(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- ACCUMULATED GRID SCALE PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- units :
- mm
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - PREC_TOT(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- ACCUMULATED CUMULUS PRECIPITATION OVER prec_acc_dt PERIODS OF TIME
- units :
- mm
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - PSFC(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- SFC PRESSURE
- units :
- Pa
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - QVAPOR(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Water vapor mixing ratio
- units :
- kg kg-1
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- perturbation potential temperature (theta-t0)
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T2(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- TEMP at 2 M
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T2max(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Daily Maximum 2m temperature
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T2min(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Daily Minimum 2m temperature
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T_MEAN(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Daily Maximum 2m temperature
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - T_RANGE(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- Daily Maximum 2m temperature
- units :
- K
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - U(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- x-wind component
- units :
- m s-1
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - V(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- y-wind component
- units :
- m s-1
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray - W(time, ni, nj)float32dask.array<chunksize=(3650, 71, 107), meta=np.ndarray>
- description :
- z-wind component
- units :
- m s-1
Array Chunk Bytes 409.72 MB 110.92 MB Shape (13483, 71, 107) (3650, 71, 107) Count 5 Tasks 4 Chunks Type float32 numpy.ndarray
- NCO :
- "4.5.5"
- history :
- Wed Mar 1 13:48:35 2017: ncatted -a calendar,XTIME,a,c,standard erai/wrf_daily_1979_data.nc Wed Feb 8 14:15:52 2017: ncap2 -A -sT_MEAN=(T2max+T2min)/2 wrf_daily_1979_data.nc wrf_daily_1979_data.nc Wed Feb 8 14:15:12 2017: ncap2 -A -sT_RANGE=T2max-T2min wrf_daily_1979_data.nc wrf_daily_1979_data.nc Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann
- history_of_appended_files :
- Wed Feb 8 14:15:52 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Wed Feb 8 14:15:12 2017: ncap2 -A -sT_RANGE=T2max-T2min wrf_daily_1979_data.nc wrf_daily_1979_data.nc Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann Wed Feb 8 14:15:12 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Mon Feb 6 15:23:59 2017: ncap2 -A -sPREC_TOT=PREC_ACC_C+PREC_ACC_NC wrf_daily_1979_data.nc wrf_daily_1979_data.nc Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann Mon Feb 6 15:23:59 2017: Appended file wrf_daily_1979_data.nc had following "history" attribute: Created : Wed Jul 20 16:10:03 2016 using simple io.write by:gutmann
- nco_openmp_thread_number :
- 1