sam_ngaqua_qobs_eqx_3d
3D fields from a near-global Aquaplanet Simulation with the System for Atmospheric Modeling
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml")
ds = cat["sam_ngaqua_qobs_eqx_3d"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
tags | ['atmosphere', 'model'] |
Dataset Contents
xarray.Dataset
- time: 640
- x: 5120
- y: 2560
- z: 34
- time(time)float64100.6 100.8 100.9 ... 180.4 180.5
- long_name :
- time
- units :
- d
array([100.625, 100.75 , 100.875, ..., 180.25 , 180.375, 180.5 ])
- x(x)float320.0 4000.0 ... 20476000.0
- units :
- m
array([0.0000e+00, 4.0000e+03, 8.0000e+03, ..., 2.0468e+07, 2.0472e+07, 2.0476e+07], dtype=float32)
- y(y)float320.0 4000.0 ... 10236000.0
- units :
- m
array([0.0000e+00, 4.0000e+03, 8.0000e+03, ..., 1.0228e+07, 1.0232e+07, 1.0236e+07], dtype=float32)
- z(z)float3237.0 112.0 ... 25500.0 27000.0
- long_name :
- height
- units :
- m
array([ 37., 112., 194., 288., 395., 520., 667., 843., 1062., 1331., 1664., 2274., 3097., 4119., 5310., 6555., 7763., 8931., 10048., 11116., 12141., 13138., 14115., 15063., 15984., 16900., 17800., 18700., 19800., 21000., 22500., 24000., 25500., 27000.], dtype=float32)
- PP(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Pressure Perturbation
- units :
- Pa
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - QN(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Non-precipitating Condensate (Water+Ice)
- units :
- g/kg
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - QP(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Precipitating Water (Rain+Snow)
- units :
- g/kg
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - QRAD(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Radiative heating rate
- units :
- K/day
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - QV(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Water Vapor
- units :
- g/kg
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - TABS(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Absolute Temperature
- units :
- K
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - U(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- X Wind Component
- units :
- m/s
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - V(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Y Wind Component
- units :
- m/s
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - W(time, z, y, x)float32dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
- long_name :
- Z Wind Component
- units :
- m/s
Array Chunk Bytes 1.14 TB 222.82 MB Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280) Count 5121 Tasks 5120 Chunks Type float32 numpy.ndarray - p(z)float32dask.array<chunksize=(34,), meta=np.ndarray>
- long_name :
- pressure
- units :
- mb
Array Chunk Bytes 136 B 136 B Shape (34,) (34,) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray