sam_ngaqua_qobs_eqx_3d

3D fields from a near-global Aquaplanet Simulation with the System for Atmospheric Modeling

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml") ds = cat["sam_ngaqua_qobs_eqx_3d"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

tags ['atmosphere', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • time: 640
    • x: 5120
    • y: 2560
    • z: 34
    • time
      (time)
      float64
      100.6 100.8 100.9 ... 180.4 180.5
      long_name :
      time
      units :
      d
      array([100.625, 100.75 , 100.875, ..., 180.25 , 180.375, 180.5  ])
    • x
      (x)
      float32
      0.0 4000.0 ... 20476000.0
      units :
      m
      array([0.0000e+00, 4.0000e+03, 8.0000e+03, ..., 2.0468e+07, 2.0472e+07,
             2.0476e+07], dtype=float32)
    • y
      (y)
      float32
      0.0 4000.0 ... 10236000.0
      units :
      m
      array([0.0000e+00, 4.0000e+03, 8.0000e+03, ..., 1.0228e+07, 1.0232e+07,
             1.0236e+07], dtype=float32)
    • z
      (z)
      float32
      37.0 112.0 ... 25500.0 27000.0
      long_name :
      height
      units :
      m
      array([   37.,   112.,   194.,   288.,   395.,   520.,   667.,   843.,  1062.,
              1331.,  1664.,  2274.,  3097.,  4119.,  5310.,  6555.,  7763.,  8931.,
             10048., 11116., 12141., 13138., 14115., 15063., 15984., 16900., 17800.,
             18700., 19800., 21000., 22500., 24000., 25500., 27000.], dtype=float32)
    • PP
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Pressure Perturbation
      units :
      Pa
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • QN
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Non-precipitating Condensate (Water+Ice)
      units :
      g/kg
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • QP
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Precipitating Water (Rain+Snow)
      units :
      g/kg
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • QRAD
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Radiative heating rate
      units :
      K/day
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • QV
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Water Vapor
      units :
      g/kg
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • TABS
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Absolute Temperature
      units :
      K
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • U
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      X Wind Component
      units :
      m/s
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • V
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Y Wind Component
      units :
      m/s
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • W
      (time, z, y, x)
      float32
      dask.array<chunksize=(1, 34, 1280, 1280), meta=np.ndarray>
      long_name :
      Z Wind Component
      units :
      m/s
      Array Chunk
      Bytes 1.14 TB 222.82 MB
      Shape (640, 34, 2560, 5120) (1, 34, 1280, 1280)
      Count 5121 Tasks 5120 Chunks
      Type float32 numpy.ndarray
      640 1 5120 2560 34
    • p
      (z)
      float32
      dask.array<chunksize=(34,), meta=np.ndarray>
      long_name :
      pressure
      units :
      mb
      Array Chunk
      Bytes 136 B 136 B
      Shape (34,) (34,)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      34 1