nasa_ccmp_wind_vectors

gap-free 6-hourly surface wind fields

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml") ds = cat["nasa_ccmp_wind_vectors"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

url https://podaac.jpl.nasa.gov/MEaSUREs-CCMP?sections=about
tags ['ocean', 'atmosphere']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • latitude: 628
    • longitude: 1440
    • time: 48392
    • latitude
      (latitude)
      float32
      -78.375 -78.125 ... 78.125 78.375
      _CoordinateAxisType :
      Lat
      _Fillvalue :
      -9999.0
      axis :
      Y
      coordinate_defines :
      center
      long_name :
      Latitude in degrees north
      standard_name :
      latitude
      units :
      degrees_north
      valid_max :
      78.375
      valid_min :
      -78.375
      array([-78.375, -78.125, -77.875, ...,  77.875,  78.125,  78.375],
            dtype=float32)
    • longitude
      (longitude)
      float32
      0.125 0.375 ... 359.625 359.875
      _CoordinateAxisType :
      Lon
      _Fillvalue :
      -9999.0
      axis :
      X
      coordinate_defines :
      center
      long_name :
      Longitude in degrees east
      standard_name :
      longitude
      units :
      degrees_east
      valid_max :
      359.875
      valid_min :
      0.125
      array([1.25000e-01, 3.75000e-01, 6.25000e-01, ..., 3.59375e+02, 3.59625e+02,
             3.59875e+02], dtype=float32)
    • time
      (time)
      datetime64[ns]
      1987-07-10 ... 2020-10-04T18:00:00
      _CoordinateAxisType :
      Time
      _Fillvalue :
      -9999.0
      axis :
      T
      long_name :
      Time of analysis
      standard_name :
      time
      array(['1987-07-10T00:00:00.000000000', '1987-07-10T06:00:00.000000000',
             '1987-07-10T12:00:00.000000000', ..., '2020-10-04T06:00:00.000000000',
             '2020-10-04T12:00:00.000000000', '2020-10-04T18:00:00.000000000'],
            dtype='datetime64[ns]')
    • nobs
      (time, latitude, longitude)
      float32
      dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
      _Fillvalue :
      -9999.0
      ancillary_variables :
      uwnd vwnd
      long_name :
      number of observations used to derive wind vector components
      standard_name :
      number_of_observations
      units :
      count
      valid_max :
      2.0
      valid_min :
      0.0
      Array Chunk
      Bytes 175.05 GB 226.08 MB
      Shape (48392, 628, 1440) (2000, 157, 180)
      Count 801 Tasks 800 Chunks
      Type float32 numpy.ndarray
      1440 628 48392
    • uwnd
      (time, latitude, longitude)
      float32
      dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
      _Fillvalue :
      -9999.0
      height :
      10 meters above sea-level
      long_name :
      u-wind vector component at 10 meters
      standard_name :
      eastward_wind
      units :
      m s-1
      valid_max :
      20.291385650634766
      valid_min :
      -21.261892318725586
      Array Chunk
      Bytes 175.05 GB 226.08 MB
      Shape (48392, 628, 1440) (2000, 157, 180)
      Count 801 Tasks 800 Chunks
      Type float32 numpy.ndarray
      1440 628 48392
    • vwnd
      (time, latitude, longitude)
      float32
      dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
      _Fillvalue :
      -9999.0
      height :
      10 meters above sea-level
      long_name :
      v-wind vector component at 10 meters
      standard_name :
      northward_wind
      units :
      m s-1
      valid_max :
      22.860544204711914
      valid_min :
      -18.280412673950195
      Array Chunk
      Bytes 175.05 GB 226.08 MB
      Shape (48392, 628, 1440) (2000, 157, 180)
      Count 801 Tasks 800 Chunks
      Type float32 numpy.ndarray
      1440 628 48392
  • Conventions :
    CF-1.6
    base_date :
    Y2020 M08 D06
    comment :
    none
    contact :
    Remote Sensing Systems, support@remss.com
    contributor_name :
    Carl Mears, Joel Scott, Frank Wentz, Ross Hoffman, Mark Leidner, Robert Atlas, Joe Ardizzone
    contributor_role :
    Co-Investigator, Software Engineer, Project Lead, Co-Investigator, Software Engineer, Principal Investigator, Software Engineer
    creator_email :
    support@remss.com
    creator_name :
    Remote Sensing Systems
    creator_url :
    http://www.remss.com/
    data_structure :
    grid
    date_created :
    20200820T130255Z
    description :
    RSS VAM 6-hour analyses starting from the NCEP GFS wind analyses
    geospatial_lat_max :
    78.375 degrees
    geospatial_lat_min :
    -78.375 degrees
    geospatial_lat_resolution :
    0.25 degrees
    geospatial_lat_units :
    degrees_north
    geospatial_lon_max :
    359.875 degrees
    geospatial_lon_min :
    0.125 degrees
    geospatial_lon_resolution :
    0.25 degrees
    geospatial_lon_units :
    degrees_east
    history :
    20200820T130255ZZ - netCDF generated from original data using IDL 8.5 by RSS using files: CCMP_RT_Wind_Analysis_20200806_V02.0_L3.0_RSS.nc
    institute_id :
    RSS
    institution :
    Remote Sensing Systems (RSS)
    keywords :
    surface winds, ocean winds, wind speed/wind direction, MEaSUREs, 10km - < 50km or approximately 0.09 degree - < 0.5 degree
    keywords_vocabulary :
    GCMD Science Keywords
    license :
    available for public use with proper citation
    netcdf_version_id :
    4.2
    processing_level :
    L3.0
    product_version :
    v2.1
    project :
    RSS Cross-Calibrated Multi-Platform Ocean Surface Wind Project
    publisher_email :
    support@remss.com
    publisher_name :
    Remote Sensing Systems
    publisher_url :
    http://www.remss.com/
    references :
    Hoffman et al., Journal of Atmospheric and Oceanic Technology, 2013; Atlas et al., BAMS, 2011; Atlas et al., BAMS, 1996
    summary :
    CCMP_RT V2.1 has been created using the same VAM as CCMP V2.0 Input data have changed and now include all V7 radiometer data from RSS, V8.1 GMI data from RSS, scatterometer data from RSS (V4 QuikSCAT and V1.2 ASCAT), quality checked moored buoy data from NDBC, PMEL, and ISDM, and NCEP GFS 0.25 degree data for the background field.
    title :
    RSS CCMP_RT V2.1 derived surface winds (Level 3.0)