nasa_ccmp_wind_vectors
gap-free 6-hourly surface wind fields
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml")
ds = cat["nasa_ccmp_wind_vectors"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
url | https://podaac.jpl.nasa.gov/MEaSUREs-CCMP?sections=about |
tags | ['ocean', 'atmosphere'] |
Dataset Contents
xarray.Dataset
- latitude: 628
- longitude: 1440
- time: 48392
- latitude(latitude)float32-78.375 -78.125 ... 78.125 78.375
- _CoordinateAxisType :
- Lat
- _Fillvalue :
- -9999.0
- axis :
- Y
- coordinate_defines :
- center
- long_name :
- Latitude in degrees north
- standard_name :
- latitude
- units :
- degrees_north
- valid_max :
- 78.375
- valid_min :
- -78.375
array([-78.375, -78.125, -77.875, ..., 77.875, 78.125, 78.375], dtype=float32)
- longitude(longitude)float320.125 0.375 ... 359.625 359.875
- _CoordinateAxisType :
- Lon
- _Fillvalue :
- -9999.0
- axis :
- X
- coordinate_defines :
- center
- long_name :
- Longitude in degrees east
- standard_name :
- longitude
- units :
- degrees_east
- valid_max :
- 359.875
- valid_min :
- 0.125
array([1.25000e-01, 3.75000e-01, 6.25000e-01, ..., 3.59375e+02, 3.59625e+02, 3.59875e+02], dtype=float32)
- time(time)datetime64[ns]1987-07-10 ... 2020-10-04T18:00:00
- _CoordinateAxisType :
- Time
- _Fillvalue :
- -9999.0
- axis :
- T
- long_name :
- Time of analysis
- standard_name :
- time
array(['1987-07-10T00:00:00.000000000', '1987-07-10T06:00:00.000000000', '1987-07-10T12:00:00.000000000', ..., '2020-10-04T06:00:00.000000000', '2020-10-04T12:00:00.000000000', '2020-10-04T18:00:00.000000000'], dtype='datetime64[ns]')
- nobs(time, latitude, longitude)float32dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
- _Fillvalue :
- -9999.0
- ancillary_variables :
- uwnd vwnd
- long_name :
- number of observations used to derive wind vector components
- standard_name :
- number_of_observations
- units :
- count
- valid_max :
- 2.0
- valid_min :
- 0.0
Array Chunk Bytes 175.05 GB 226.08 MB Shape (48392, 628, 1440) (2000, 157, 180) Count 801 Tasks 800 Chunks Type float32 numpy.ndarray - uwnd(time, latitude, longitude)float32dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
- _Fillvalue :
- -9999.0
- height :
- 10 meters above sea-level
- long_name :
- u-wind vector component at 10 meters
- standard_name :
- eastward_wind
- units :
- m s-1
- valid_max :
- 20.291385650634766
- valid_min :
- -21.261892318725586
Array Chunk Bytes 175.05 GB 226.08 MB Shape (48392, 628, 1440) (2000, 157, 180) Count 801 Tasks 800 Chunks Type float32 numpy.ndarray - vwnd(time, latitude, longitude)float32dask.array<chunksize=(2000, 157, 180), meta=np.ndarray>
- _Fillvalue :
- -9999.0
- height :
- 10 meters above sea-level
- long_name :
- v-wind vector component at 10 meters
- standard_name :
- northward_wind
- units :
- m s-1
- valid_max :
- 22.860544204711914
- valid_min :
- -18.280412673950195
Array Chunk Bytes 175.05 GB 226.08 MB Shape (48392, 628, 1440) (2000, 157, 180) Count 801 Tasks 800 Chunks Type float32 numpy.ndarray
- Conventions :
- CF-1.6
- base_date :
- Y2020 M08 D06
- comment :
- none
- contact :
- Remote Sensing Systems, support@remss.com
- contributor_name :
- Carl Mears, Joel Scott, Frank Wentz, Ross Hoffman, Mark Leidner, Robert Atlas, Joe Ardizzone
- contributor_role :
- Co-Investigator, Software Engineer, Project Lead, Co-Investigator, Software Engineer, Principal Investigator, Software Engineer
- creator_email :
- support@remss.com
- creator_name :
- Remote Sensing Systems
- creator_url :
- http://www.remss.com/
- data_structure :
- grid
- date_created :
- 20200820T130255Z
- description :
- RSS VAM 6-hour analyses starting from the NCEP GFS wind analyses
- geospatial_lat_max :
- 78.375 degrees
- geospatial_lat_min :
- -78.375 degrees
- geospatial_lat_resolution :
- 0.25 degrees
- geospatial_lat_units :
- degrees_north
- geospatial_lon_max :
- 359.875 degrees
- geospatial_lon_min :
- 0.125 degrees
- geospatial_lon_resolution :
- 0.25 degrees
- geospatial_lon_units :
- degrees_east
- history :
- 20200820T130255ZZ - netCDF generated from original data using IDL 8.5 by RSS using files: CCMP_RT_Wind_Analysis_20200806_V02.0_L3.0_RSS.nc
- institute_id :
- RSS
- institution :
- Remote Sensing Systems (RSS)
- keywords :
- surface winds, ocean winds, wind speed/wind direction, MEaSUREs, 10km - < 50km or approximately 0.09 degree - < 0.5 degree
- keywords_vocabulary :
- GCMD Science Keywords
- license :
- available for public use with proper citation
- netcdf_version_id :
- 4.2
- processing_level :
- L3.0
- product_version :
- v2.1
- project :
- RSS Cross-Calibrated Multi-Platform Ocean Surface Wind Project
- publisher_email :
- support@remss.com
- publisher_name :
- Remote Sensing Systems
- publisher_url :
- http://www.remss.com/
- references :
- Hoffman et al., Journal of Atmospheric and Oceanic Technology, 2013; Atlas et al., BAMS, 2011; Atlas et al., BAMS, 1996
- summary :
- CCMP_RT V2.1 has been created using the same VAM as CCMP V2.0 Input data have changed and now include all V7 radiometer data from RSS, V8.1 GMI data from RSS, scatterometer data from RSS (V4 QuikSCAT and V1.2 ASCAT), quality checked moored buoy data from NDBC, PMEL, and ISDM, and NCEP GFS 0.25 degree data for the background field.
- title :
- RSS CCMP_RT V2.1 derived surface winds (Level 3.0)