gpcp_cdr_daily_v1_3
3D fields from a near-global Aquaplanet Simulation with the System for Atmospheric Modeling
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml")
ds = cat["gpcp_cdr_daily_v1_3"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
title | Global Precipitation Climatatology Project (GPCP) Climate Data Record (CDR), Daily V1.3 |
url | https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global-precipitation-climatology-project |
tags | ['atmosphere', 'model'] |
Dataset Contents
xarray.Dataset
- latitude: 180
- longitude: 360
- nv: 2
- time: 8069
- lat_bounds(time, latitude, nv)float32dask.array<chunksize=(8069, 180, 2), meta=np.ndarray>
- comment :
- latitude values at the north and south bounds of each pixel.
Array Chunk Bytes 11.62 MB 11.62 MB Shape (8069, 180, 2) (8069, 180, 2) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - latitude(latitude)float32-90.0 -89.0 -88.0 ... 88.0 89.0
- axis :
- Y
- bounds :
- lat_bounds
- long_name :
- Latitude
- standard_name :
- latitude
- units :
- degrees_north
- valid_range :
- [-90.0, 90.0]
array([-90., -89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79., -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67., -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55., -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43., -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31., -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19., -18., -17., -16., -15., -14., -13., -12., -11., -10., -9., -8., -7., -6., -5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89.], dtype=float32)
- lon_bounds(time, longitude, nv)float32dask.array<chunksize=(8069, 360, 2), meta=np.ndarray>
- comment :
- longitude values at the west and east bounds of each pixel.
Array Chunk Bytes 23.24 MB 23.24 MB Shape (8069, 360, 2) (8069, 360, 2) Count 2 Tasks 1 Chunks Type float32 numpy.ndarray - longitude(longitude)float320.0 1.0 2.0 ... 357.0 358.0 359.0
- axis :
- X
- bounds :
- lon_bounds
- long_name :
- Longitude
- standard_name :
- longitude
- units :
- degrees_east
- valid_range :
- [0.0, 360.0]
array([ 0., 1., 2., ..., 357., 358., 359.], dtype=float32)
- time(time)object1997-01-01 00:00:00 ... 2018-12-31 00:00:00
- axis :
- T
- bounds :
- time_bounds
- long_name :
- time
- standard_name :
- time
array([cftime.DatetimeGregorian(1997, 1, 1, 0, 0, 0, 0), cftime.DatetimeGregorian(1997, 1, 2, 0, 0, 0, 0), cftime.DatetimeGregorian(1997, 1, 3, 0, 0, 0, 0), ..., cftime.DatetimeGregorian(2018, 12, 29, 0, 0, 0, 0), cftime.DatetimeGregorian(2018, 12, 30, 0, 0, 0, 0), cftime.DatetimeGregorian(2018, 12, 31, 0, 0, 0, 0)], dtype=object)
- time_bounds(time, nv)objectdask.array<chunksize=(8069, 2), meta=np.ndarray>
- comment :
- time bounds for each time value
Array Chunk Bytes 129.10 kB 129.10 kB Shape (8069, 2) (8069, 2) Count 2 Tasks 1 Chunks Type object numpy.ndarray
- precip(time, latitude, longitude)float32dask.array<chunksize=(517, 180, 360), meta=np.ndarray>
- cell_methods :
- area: mean time: mean
- long_name :
- NOAA Climate Data Record (CDR) of Daily GPCP Satellite-Gauge Combined Precipitation
- standard_name :
- lwe_precipitation_rate
- units :
- mm/day
- valid_range :
- [0.0, 100.0]
Array Chunk Bytes 2.09 GB 134.01 MB Shape (8069, 180, 360) (517, 180, 360) Count 17 Tasks 16 Chunks Type float32 numpy.ndarray
- Conventions :
- CF-1.6, ACDD 1.3
- Metadata_Conventions :
- CF-1.6, Unidata Dataset Discovery v1.0, NOAA CDR v1.0, GDS v2.0
- acknowledgment :
- This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites.
- cdm_data_type :
- Grid
- cdr_program :
- NOAA Climate Data Record Program for satellites, FY 2011.
- cdr_variable :
- precipitation
- comment :
- Processing computer: eagle2.umd.edu
- contributor_name :
- Robert Adler, Jian-Jian Wang
- contributor_role :
- principalInvestigator, processor and custodian
- creator_email :
- jjwang@umd.edu
- creator_name :
- Dr. Jian-Jian Wang
- date_created :
- 2017-05-30T16:53:52Z
- geospatial_lat_max :
- 90.0
- geospatial_lat_min :
- -90.0
- geospatial_lat_resolution :
- 1 degree
- geospatial_lat_units :
- degrees_north
- geospatial_lon_max :
- 360.0
- geospatial_lon_min :
- 0.0
- geospatial_lon_resolution :
- 1 degree
- geospatial_lon_units :
- degrees_east
- history :
- 1) 2017-05-30T16:53:52Z, Dr. Jian-Jian Wang, U of Maryland, Created beta (B1) file
- id :
- 199701/gpcp_v01r03_daily_d19970101_c20170530.nc
- institution :
- ACADEMIC > UMD/ESSIC > Earth System Science Interdisciplinary Center, University of Maryland
- keywords :
- EARTH SCIENCE > ATMOSPHERE > PRECIPITATION > PRECIPITATION AMOUNT
- keywords_vocabulary :
- NASA Global Change Master Directory (GCMD) Earth Science Keywords, Version 7.0
- license :
- No constraints on data access or use.
- metadata_link :
- gov.noaa.ncdc:XXXXX
- naming_authority :
- gov.noaa.ncdc
- platform :
- GOES (Geostationary Operational Environmental Satellite), GMS (Japan Geostationary Meteorological Satellite), METEOSAT, TIROS > Television Infrared Observation Satellite, DMSP (Defense Meteorological Satellite Program)
- processing_level :
- NASA Level 3
- product_version :
- v01r03
- project :
- GPCP > Global Precipitation Climatology Project
- publisher_email :
- jjwang@umd.edu
- publisher_name :
- NOAA National Centers for Environmental Information (NCEI)
- publisher_url :
- https://www.ncei.noaa.gov
- references :
- Huffman et al. 1997, http://dx.doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2; Adler et al. 2003, http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2; Huffman et al. 2009, http://dx.doi.org/10.1029/2009GL040000; Adler et al. 2017, Global Precipitation Climatology Project (GPCP) Daily Analysis: Climate Algorithm Theoretical Basis Document (C-ATBD)
- sensor :
- Imager, TOVS > TIROS Operational Vertical Sounder, SSMI > Special Sensor Microwave/Imager
- source :
- /data1/GPCP_CDR/GPCP_Output/1DD//bin/199701/stfsg3.19970101.s
- spatial_resolution :
- 1 degree
- standard_name_vocabulary :
- CF Standard Name Table (v41, 22 February 2017)
- summary :
- Global Precipitation Climatology Project (GPCP) Daily Version 1.3 gridded, merged satellite/gauge precipitation Climate data Record (CDR) from 1996 to present.
- time_coverage_duration :
- P1D
- time_coverage_end :
- 1997-01-01T23:59:59Z
- time_coverage_start :
- 1997-01-01T00:00:00Z
- title :
- Global Precipitation Climatatology Project (GPCP) Climate Data Record (CDR), Daily V1.3