gpcp_cdr_daily_v1_3

3D fields from a near-global Aquaplanet Simulation with the System for Atmospheric Modeling

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml") ds = cat["gpcp_cdr_daily_v1_3"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

title Global Precipitation Climatatology Project (GPCP) Climate Data Record (CDR), Daily V1.3
url https://climatedataguide.ucar.edu/climate-data/gpcp-daily-global-precipitation-climatology-project
tags ['atmosphere', 'model']

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • latitude: 180
    • longitude: 360
    • nv: 2
    • time: 8069
    • lat_bounds
      (time, latitude, nv)
      float32
      dask.array<chunksize=(8069, 180, 2), meta=np.ndarray>
      comment :
      latitude values at the north and south bounds of each pixel.
      Array Chunk
      Bytes 11.62 MB 11.62 MB
      Shape (8069, 180, 2) (8069, 180, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 180 8069
    • latitude
      (latitude)
      float32
      -90.0 -89.0 -88.0 ... 88.0 89.0
      axis :
      Y
      bounds :
      lat_bounds
      long_name :
      Latitude
      standard_name :
      latitude
      units :
      degrees_north
      valid_range :
      [-90.0, 90.0]
      array([-90., -89., -88., -87., -86., -85., -84., -83., -82., -81., -80., -79.,
             -78., -77., -76., -75., -74., -73., -72., -71., -70., -69., -68., -67.,
             -66., -65., -64., -63., -62., -61., -60., -59., -58., -57., -56., -55.,
             -54., -53., -52., -51., -50., -49., -48., -47., -46., -45., -44., -43.,
             -42., -41., -40., -39., -38., -37., -36., -35., -34., -33., -32., -31.,
             -30., -29., -28., -27., -26., -25., -24., -23., -22., -21., -20., -19.,
             -18., -17., -16., -15., -14., -13., -12., -11., -10.,  -9.,  -8.,  -7.,
              -6.,  -5.,  -4.,  -3.,  -2.,  -1.,   0.,   1.,   2.,   3.,   4.,   5.,
               6.,   7.,   8.,   9.,  10.,  11.,  12.,  13.,  14.,  15.,  16.,  17.,
              18.,  19.,  20.,  21.,  22.,  23.,  24.,  25.,  26.,  27.,  28.,  29.,
              30.,  31.,  32.,  33.,  34.,  35.,  36.,  37.,  38.,  39.,  40.,  41.,
              42.,  43.,  44.,  45.,  46.,  47.,  48.,  49.,  50.,  51.,  52.,  53.,
              54.,  55.,  56.,  57.,  58.,  59.,  60.,  61.,  62.,  63.,  64.,  65.,
              66.,  67.,  68.,  69.,  70.,  71.,  72.,  73.,  74.,  75.,  76.,  77.,
              78.,  79.,  80.,  81.,  82.,  83.,  84.,  85.,  86.,  87.,  88.,  89.],
            dtype=float32)
    • lon_bounds
      (time, longitude, nv)
      float32
      dask.array<chunksize=(8069, 360, 2), meta=np.ndarray>
      comment :
      longitude values at the west and east bounds of each pixel.
      Array Chunk
      Bytes 23.24 MB 23.24 MB
      Shape (8069, 360, 2) (8069, 360, 2)
      Count 2 Tasks 1 Chunks
      Type float32 numpy.ndarray
      2 360 8069
    • longitude
      (longitude)
      float32
      0.0 1.0 2.0 ... 357.0 358.0 359.0
      axis :
      X
      bounds :
      lon_bounds
      long_name :
      Longitude
      standard_name :
      longitude
      units :
      degrees_east
      valid_range :
      [0.0, 360.0]
      array([  0.,   1.,   2., ..., 357., 358., 359.], dtype=float32)
    • time
      (time)
      object
      1997-01-01 00:00:00 ... 2018-12-31 00:00:00
      axis :
      T
      bounds :
      time_bounds
      long_name :
      time
      standard_name :
      time
      array([cftime.DatetimeGregorian(1997, 1, 1, 0, 0, 0, 0),
             cftime.DatetimeGregorian(1997, 1, 2, 0, 0, 0, 0),
             cftime.DatetimeGregorian(1997, 1, 3, 0, 0, 0, 0), ...,
             cftime.DatetimeGregorian(2018, 12, 29, 0, 0, 0, 0),
             cftime.DatetimeGregorian(2018, 12, 30, 0, 0, 0, 0),
             cftime.DatetimeGregorian(2018, 12, 31, 0, 0, 0, 0)], dtype=object)
    • time_bounds
      (time, nv)
      object
      dask.array<chunksize=(8069, 2), meta=np.ndarray>
      comment :
      time bounds for each time value
      Array Chunk
      Bytes 129.10 kB 129.10 kB
      Shape (8069, 2) (8069, 2)
      Count 2 Tasks 1 Chunks
      Type object numpy.ndarray
      2 8069
    • precip
      (time, latitude, longitude)
      float32
      dask.array<chunksize=(517, 180, 360), meta=np.ndarray>
      cell_methods :
      area: mean time: mean
      long_name :
      NOAA Climate Data Record (CDR) of Daily GPCP Satellite-Gauge Combined Precipitation
      standard_name :
      lwe_precipitation_rate
      units :
      mm/day
      valid_range :
      [0.0, 100.0]
      Array Chunk
      Bytes 2.09 GB 134.01 MB
      Shape (8069, 180, 360) (517, 180, 360)
      Count 17 Tasks 16 Chunks
      Type float32 numpy.ndarray
      360 180 8069
  • Conventions :
    CF-1.6, ACDD 1.3
    Metadata_Conventions :
    CF-1.6, Unidata Dataset Discovery v1.0, NOAA CDR v1.0, GDS v2.0
    acknowledgment :
    This project was supported in part by a grant from the NOAA Climate Data Record (CDR) Program for satellites.
    cdm_data_type :
    Grid
    cdr_program :
    NOAA Climate Data Record Program for satellites, FY 2011.
    cdr_variable :
    precipitation
    comment :
    Processing computer: eagle2.umd.edu
    contributor_name :
    Robert Adler, Jian-Jian Wang
    contributor_role :
    principalInvestigator, processor and custodian
    creator_email :
    jjwang@umd.edu
    creator_name :
    Dr. Jian-Jian Wang
    date_created :
    2017-05-30T16:53:52Z
    geospatial_lat_max :
    90.0
    geospatial_lat_min :
    -90.0
    geospatial_lat_resolution :
    1 degree
    geospatial_lat_units :
    degrees_north
    geospatial_lon_max :
    360.0
    geospatial_lon_min :
    0.0
    geospatial_lon_resolution :
    1 degree
    geospatial_lon_units :
    degrees_east
    history :
    1) 2017-05-30T16:53:52Z, Dr. Jian-Jian Wang, U of Maryland, Created beta (B1) file
    id :
    199701/gpcp_v01r03_daily_d19970101_c20170530.nc
    institution :
    ACADEMIC > UMD/ESSIC > Earth System Science Interdisciplinary Center, University of Maryland
    keywords :
    EARTH SCIENCE > ATMOSPHERE > PRECIPITATION > PRECIPITATION AMOUNT
    keywords_vocabulary :
    NASA Global Change Master Directory (GCMD) Earth Science Keywords, Version 7.0
    license :
    No constraints on data access or use.
    metadata_link :
    gov.noaa.ncdc:XXXXX
    naming_authority :
    gov.noaa.ncdc
    platform :
    GOES (Geostationary Operational Environmental Satellite), GMS (Japan Geostationary Meteorological Satellite), METEOSAT, TIROS > Television Infrared Observation Satellite, DMSP (Defense Meteorological Satellite Program)
    processing_level :
    NASA Level 3
    product_version :
    v01r03
    project :
    GPCP > Global Precipitation Climatology Project
    publisher_email :
    jjwang@umd.edu
    publisher_name :
    NOAA National Centers for Environmental Information (NCEI)
    publisher_url :
    https://www.ncei.noaa.gov
    references :
    Huffman et al. 1997, http://dx.doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2; Adler et al. 2003, http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2; Huffman et al. 2009, http://dx.doi.org/10.1029/2009GL040000; Adler et al. 2017, Global Precipitation Climatology Project (GPCP) Daily Analysis: Climate Algorithm Theoretical Basis Document (C-ATBD)
    sensor :
    Imager, TOVS > TIROS Operational Vertical Sounder, SSMI > Special Sensor Microwave/Imager
    source :
    /data1/GPCP_CDR/GPCP_Output/1DD//bin/199701/stfsg3.19970101.s
    spatial_resolution :
    1 degree
    standard_name_vocabulary :
    CF Standard Name Table (v41, 22 February 2017)
    summary :
    Global Precipitation Climatology Project (GPCP) Daily Version 1.3 gridded, merged satellite/gauge precipitation Climate data Record (CDR) from 1996 to present.
    time_coverage_duration :
    P1D
    time_coverage_end :
    1997-01-01T23:59:59Z
    time_coverage_start :
    1997-01-01T00:00:00Z
    title :
    Global Precipitation Climatatology Project (GPCP) Climate Data Record (CDR), Daily V1.3