gmet_v1

Full GMET version 1 (Newman) met ensemble in zarr format

Load in Python

from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml") ds = cat["gmet_v1"].to_dask()

Working with requester pays data

Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:

Metadata

Dataset Contents

Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • ensemble: 100
    • lat: 224
    • lon: 464
    • time: 12054
    • ensemble
      (ensemble)
      int64
      0 1 2 3 4 5 6 ... 94 95 96 97 98 99
      array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
             18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
             36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
             54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
             72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
             90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
    • lat
      (lat)
      float64
      25.06 25.19 25.31 ... 52.81 52.94
      long_name :
      latitude
      units :
      degrees_north
      array([25.0625, 25.1875, 25.3125, ..., 52.6875, 52.8125, 52.9375])
    • lon
      (lon)
      float64
      -124.9 -124.8 ... -67.19 -67.06
      long_name :
      longitude
      units :
      degrees_east
      array([-124.9375, -124.8125, -124.6875, ...,  -67.3125,  -67.1875,  -67.0625])
    • time
      (time)
      datetime64[ns]
      1980-01-01 ... 2012-12-31
      standard_name :
      time
      array(['1980-01-01T00:00:00.000000000', '1980-01-02T00:00:00.000000000',
             '1980-01-03T00:00:00.000000000', ..., '2012-12-29T00:00:00.000000000',
             '2012-12-30T00:00:00.000000000', '2012-12-31T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • elevation
      (lat, lon)
      float64
      dask.array<chunksize=(224, 464), meta=np.ndarray>
      long_name :
      Terrain Elevation
      standard_name :
      elevation
      units :
      meters
      Array Chunk
      Bytes 831.49 kB 831.49 kB
      Shape (224, 464) (224, 464)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      464 224
    • mask
      (lat, lon)
      int32
      dask.array<chunksize=(224, 464), meta=np.ndarray>
      comment :
      0 value indicates cell is not active
      long_name :
      domain mask
      note :
      unitless
      Array Chunk
      Bytes 415.74 kB 415.74 kB
      Shape (224, 464) (224, 464)
      Count 2 Tasks 1 Chunks
      Type int32 numpy.ndarray
      464 224
    • pcp
      (ensemble, time, lat, lon)
      float64
      dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
      long_name :
      Daily estimated precipitation accumulation
      standard_name :
      precipitation
      units :
      kg m-2
      Array Chunk
      Bytes 1.00 TB 304.32 MB
      Shape (100, 12054, 224, 464) (1, 366, 224, 464)
      Count 3301 Tasks 3300 Chunks
      Type float64 numpy.ndarray
      100 1 464 224 12054
    • t_max
      (ensemble, time, lat, lon)
      float64
      dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
      long_name :
      Daily estimated maximum temperature
      units :
      degC
      Array Chunk
      Bytes 1.00 TB 304.32 MB
      Shape (100, 12054, 224, 464) (1, 366, 224, 464)
      Count 3301 Tasks 3300 Chunks
      Type float64 numpy.ndarray
      100 1 464 224 12054
    • t_mean
      (ensemble, time, lat, lon)
      float64
      dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
      long_name :
      Daily estimated mean temperature
      units :
      degC
      Array Chunk
      Bytes 1.00 TB 304.32 MB
      Shape (100, 12054, 224, 464) (1, 366, 224, 464)
      Count 3301 Tasks 3300 Chunks
      Type float64 numpy.ndarray
      100 1 464 224 12054
    • t_min
      (ensemble, time, lat, lon)
      float64
      dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
      long_name :
      Daily estimated maximum temperature
      units :
      degC
      Array Chunk
      Bytes 1.00 TB 304.32 MB
      Shape (100, 12054, 224, 464) (1, 366, 224, 464)
      Count 3301 Tasks 3300 Chunks
      Type float64 numpy.ndarray
      100 1 464 224 12054
    • t_range
      (ensemble, time, lat, lon)
      float64
      dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
      long_name :
      Daily estimated diurnal temperature range
      units :
      degC
      Array Chunk
      Bytes 1.00 TB 304.32 MB
      Shape (100, 12054, 224, 464) (1, 366, 224, 464)
      Count 3301 Tasks 3300 Chunks
      Type float64 numpy.ndarray
      100 1 464 224 12054
  • history :
    Version 1.0 of ensemble dataset, created December 2014.Mon Oct 23 23:59:02 2017jhamman: corrected mask and added t_min and tmax as ds['t_mean'] +/- 0.5 * ds['t_range']
    institution :
    National Center for Atmospheric Research (NCAR), Boulder, CO USA
    nco_openmp_thread_number :
    1
    references :
    Newman et al. 2015: Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States. J. Hydrometeorology
    source :
    Generated using version 1.0 of CONUS ensemble code base
    title :
    CONUS daily 12-km gridded ensemble precipitation and temperature dataset for 1980-2012