gmet_v1
Full GMET version 1 (Newman) met ensemble in zarr format
Load in Python
from intake import open_catalog
cat = open_catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore/master/intake-catalogs/atmosphere.yaml")
ds = cat["gmet_v1"].to_dask()
Working with requester pays data
Several of the datasets within the cloud data catalog are contained in requester pays storage buckets. This means that a user requesting data must provide their own billing project (created and authenticated through Google Cloud Platform) to be billed for the charges associated with accessing a dataset. To set up an GCP billing project and use it for authentication in applications:- Create a project on GCP; if this is the first time using GCP, a prompt will appear to choose a Google account to link to all GCP-related activities.
- Create a Cloud Billing account associated with the project and enable billing for the project through this account.
- Using Google Cloud IAM, add the Service Usage Consumer role to your account, which enables it to make billed requests on the behalf of the project.
- Through command line, install the Google Cloud SDK; this can be done using conda:
conda install -c conda-forge google-cloud-sdk
- Initialize the
gcloud
command line interface, logging into the account used to create the aforementioned project and selecting it as the default project; this will allow the project to be used for requester pays access through the command line:gcloud auth login gcloud init
- Finally, use
gcloud
to establish application default credentials; this will allow the project to be used for requester pays access through applications:gcloud auth application-default login
Metadata
Dataset Contents
xarray.Dataset
- ensemble: 100
- lat: 224
- lon: 464
- time: 12054
- ensemble(ensemble)int640 1 2 3 4 5 6 ... 94 95 96 97 98 99
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])
- lat(lat)float6425.06 25.19 25.31 ... 52.81 52.94
- long_name :
- latitude
- units :
- degrees_north
array([25.0625, 25.1875, 25.3125, ..., 52.6875, 52.8125, 52.9375])
- lon(lon)float64-124.9 -124.8 ... -67.19 -67.06
- long_name :
- longitude
- units :
- degrees_east
array([-124.9375, -124.8125, -124.6875, ..., -67.3125, -67.1875, -67.0625])
- time(time)datetime64[ns]1980-01-01 ... 2012-12-31
- standard_name :
- time
array(['1980-01-01T00:00:00.000000000', '1980-01-02T00:00:00.000000000', '1980-01-03T00:00:00.000000000', ..., '2012-12-29T00:00:00.000000000', '2012-12-30T00:00:00.000000000', '2012-12-31T00:00:00.000000000'], dtype='datetime64[ns]')
- elevation(lat, lon)float64dask.array<chunksize=(224, 464), meta=np.ndarray>
- long_name :
- Terrain Elevation
- standard_name :
- elevation
- units :
- meters
Array Chunk Bytes 831.49 kB 831.49 kB Shape (224, 464) (224, 464) Count 2 Tasks 1 Chunks Type float64 numpy.ndarray - mask(lat, lon)int32dask.array<chunksize=(224, 464), meta=np.ndarray>
- comment :
- 0 value indicates cell is not active
- long_name :
- domain mask
- note :
- unitless
Array Chunk Bytes 415.74 kB 415.74 kB Shape (224, 464) (224, 464) Count 2 Tasks 1 Chunks Type int32 numpy.ndarray - pcp(ensemble, time, lat, lon)float64dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
- long_name :
- Daily estimated precipitation accumulation
- standard_name :
- precipitation
- units :
- kg m-2
Array Chunk Bytes 1.00 TB 304.32 MB Shape (100, 12054, 224, 464) (1, 366, 224, 464) Count 3301 Tasks 3300 Chunks Type float64 numpy.ndarray - t_max(ensemble, time, lat, lon)float64dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
- long_name :
- Daily estimated maximum temperature
- units :
- degC
Array Chunk Bytes 1.00 TB 304.32 MB Shape (100, 12054, 224, 464) (1, 366, 224, 464) Count 3301 Tasks 3300 Chunks Type float64 numpy.ndarray - t_mean(ensemble, time, lat, lon)float64dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
- long_name :
- Daily estimated mean temperature
- units :
- degC
Array Chunk Bytes 1.00 TB 304.32 MB Shape (100, 12054, 224, 464) (1, 366, 224, 464) Count 3301 Tasks 3300 Chunks Type float64 numpy.ndarray - t_min(ensemble, time, lat, lon)float64dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
- long_name :
- Daily estimated maximum temperature
- units :
- degC
Array Chunk Bytes 1.00 TB 304.32 MB Shape (100, 12054, 224, 464) (1, 366, 224, 464) Count 3301 Tasks 3300 Chunks Type float64 numpy.ndarray - t_range(ensemble, time, lat, lon)float64dask.array<chunksize=(1, 366, 224, 464), meta=np.ndarray>
- long_name :
- Daily estimated diurnal temperature range
- units :
- degC
Array Chunk Bytes 1.00 TB 304.32 MB Shape (100, 12054, 224, 464) (1, 366, 224, 464) Count 3301 Tasks 3300 Chunks Type float64 numpy.ndarray
- history :
- Version 1.0 of ensemble dataset, created December 2014.Mon Oct 23 23:59:02 2017jhamman: corrected mask and added t_min and tmax as ds['t_mean'] +/- 0.5 * ds['t_range']
- institution :
- National Center for Atmospheric Research (NCAR), Boulder, CO USA
- nco_openmp_thread_number :
- 1
- references :
- Newman et al. 2015: Gridded Ensemble Precipitation and Temperature Estimates for the Contiguous United States. J. Hydrometeorology
- source :
- Generated using version 1.0 of CONUS ensemble code base
- title :
- CONUS daily 12-km gridded ensemble precipitation and temperature dataset for 1980-2012